BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Grid DAP Data | Sub- set | Table DAP Data | Make A Graph | W M S | Source Data Files | Acces- sible | Title | Sum- mary | FGDC, ISO, Metadata | Back- ground Info | RSS | E | Institution | Dataset ID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
data | graph | files | public | [High Sensitivity DIP] - Global distribution of phosphate using high sensitivity techniques from data aggregated from many studies between 1988-2017 (Convergence: RAISE: Linking the adaptive dynamics of plankton with emergent global ocean biogeochemistry) | F I M | background | BCO-DMO | bcodmo_dataset_764704 |
Row Type | Variable Name | Attribute Name | Data Type | Value |
---|---|---|---|---|
attribute | NC_GLOBAL | access_formats | String | .htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson |
attribute | NC_GLOBAL | acquisition_description | String | For complete methdology, see Martiny et al, (2019). Data have been aggregated from many studies. Procedures and methodology include the following: Sampling procedures: Liquid samples taken from the Rosette or Underway System. Samples are either processed fresh or stored frozen until processing. Some samples are pre-filtered. Methodology: High sensitivity dissolved phosphate measurements done using either Liquid Waveguide Cells, magnesium induced precipitation (MAGIC), or solid phase extraction. Many instruments were used but the main procedures include: MAGIC (Karl & Tien, 1992), LWCC - Liquid Waveguide cells (Li & Hansell, 2008), and Solid phase extraction (Ma, Yuan, & Yuan, 2017). |
attribute | NC_GLOBAL | awards_0_award_nid | String | 764269 |
attribute | NC_GLOBAL | awards_0_award_number | String | OCE-1848576 |
attribute | NC_GLOBAL | awards_0_data_url | String | http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1848576 |
attribute | NC_GLOBAL | awards_0_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_0_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_0_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_0_program_manager | String | Michael E. Sieracki |
attribute | NC_GLOBAL | awards_0_program_manager_nid | String | 50446 |
attribute | NC_GLOBAL | cdm_data_type | String | Other |
attribute | NC_GLOBAL | comment | String | High sensitivity DIP Global distribution of phosphate using high sensitivity techniques PI: Adam Martiny (UC Irvine) Version date: 17-April-2019 |
attribute | NC_GLOBAL | Conventions | String | COARDS, CF-1.6, ACDD-1.3 |
attribute | NC_GLOBAL | creator_email | String | info at bco-dmo.org |
attribute | NC_GLOBAL | creator_name | String | BCO-DMO |
attribute | NC_GLOBAL | creator_type | String | institution |
attribute | NC_GLOBAL | creator_url | String | https://www.bco-dmo.org/ |
attribute | NC_GLOBAL | data_source | String | extract_data_as_tsv version 2.3 19 Dec 2019 |
attribute | NC_GLOBAL | date_created | String | 2019-04-10T19:33:06Z |
attribute | NC_GLOBAL | date_modified | String | 2019-08-28T19:55:01Z |
attribute | NC_GLOBAL | defaultDataQuery | String | &time<now |
attribute | NC_GLOBAL | doi | String | 10.1575/1912/bco-dmo.764704.1 |
attribute | NC_GLOBAL | Easternmost_Easting | double | 179.5304133 |
attribute | NC_GLOBAL | geospatial_lat_max | double | 68.0 |
attribute | NC_GLOBAL | geospatial_lat_min | double | -40.16724667 |
attribute | NC_GLOBAL | geospatial_lat_units | String | degrees_north |
attribute | NC_GLOBAL | geospatial_lon_max | double | 179.5304133 |
attribute | NC_GLOBAL | geospatial_lon_min | double | -179.99976 |
attribute | NC_GLOBAL | geospatial_lon_units | String | degrees_east |
attribute | NC_GLOBAL | geospatial_vertical_max | double | 5878.0 |
attribute | NC_GLOBAL | geospatial_vertical_min | double | 0.0 |
attribute | NC_GLOBAL | geospatial_vertical_positive | String | down |
attribute | NC_GLOBAL | geospatial_vertical_units | String | m |
attribute | NC_GLOBAL | infoUrl | String | https://www.bco-dmo.org/dataset/764704 |
attribute | NC_GLOBAL | institution | String | BCO-DMO |
attribute | NC_GLOBAL | instruments_0_acronym | String | Niskin bottle |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_description | String | Liquid samples taken from the Rosette or Underway System. |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_nid | String | 765289 |
attribute | NC_GLOBAL | instruments_0_description | String | A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24 or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc. |
attribute | NC_GLOBAL | instruments_0_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L22/current/TOOL0412/ |
attribute | NC_GLOBAL | instruments_0_instrument_name | String | Niskin bottle |
attribute | NC_GLOBAL | instruments_0_instrument_nid | String | 413 |
attribute | NC_GLOBAL | instruments_0_supplied_name | String | Rosette |
attribute | NC_GLOBAL | instruments_1_acronym | String | Pump-Ship Intake |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_description | String | Liquid samples taken from the Rosette or Underway System. |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_nid | String | 765290 |
attribute | NC_GLOBAL | instruments_1_description | String | The 'Pump-underway ship intake' system indicates that samples are from the ship's clean water intake pump. This is essentially a surface water sample from a source of uncontaminated near-surface (commonly 3 to 7 m) seawater that can be pumped continuously to shipboard laboratories on research vessels. There is typically a temperature sensor near the intake (known as the hull temperature) to provide measurements that are as close as possible to the ambient water temperature. The flow from the supply is typically directed through continuously logged sensors such as a thermosalinograph and a fluorometer. Water samples are often collected from the underway supply that may also be referred to as the non-toxic supply. Ideally the data contributor has specified the depth in the ship's hull at which the pump is mounted. |
attribute | NC_GLOBAL | instruments_1_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/31/ |
attribute | NC_GLOBAL | instruments_1_instrument_name | String | Pump - Surface Underway Ship Intake |
attribute | NC_GLOBAL | instruments_1_instrument_nid | String | 534 |
attribute | NC_GLOBAL | instruments_1_supplied_name | String | Underway System |
attribute | NC_GLOBAL | instruments_2_acronym | String | LWCC |
attribute | NC_GLOBAL | instruments_2_dataset_instrument_description | String | High sensitivity dissolved phosphate measurements done using either Liquid Waveguide Cells, magnesium induced precipitation (MAGIC), or solid phase extraction. |
attribute | NC_GLOBAL | instruments_2_dataset_instrument_nid | String | 765288 |
attribute | NC_GLOBAL | instruments_2_description | String | Liquid Waveguide Capillary Cells (LWCC) are optical sample cells that combine an increased optical pathlength (2-500 cm) with small sample volumes. They can be connected via optical fibers to a spectrophotometer with fiber optic capabilities. Similar to optical fibers, light is confined within the (liquid) core of an LWCC by total internal reflection at the core/wall interface. Ultra-sensitive absorbance measurements can be performed in the ultraviolet (UV), visible (VIS) and near-infrared (NIR) to detect low sample concentrations in a laboratory or process control environment. According to Beer’s Law the absorbance signal is proportional to chemical concentration and light path length. |
attribute | NC_GLOBAL | instruments_2_instrument_name | String | Liquid Waveguide Capillary Cells |
attribute | NC_GLOBAL | instruments_2_instrument_nid | String | 723 |
attribute | NC_GLOBAL | instruments_2_supplied_name | String | Liquid Waveguide Cells |
attribute | NC_GLOBAL | keywords | String | bco, bco-dmo, biological, chemical, data, dataset, date, day, depth, dip, dmo, erddap, latitude, longitude, management, month, oceanography, office, preliminary, year |
attribute | NC_GLOBAL | license | String | https://www.bco-dmo.org/dataset/764704/license |
attribute | NC_GLOBAL | metadata_source | String | https://www.bco-dmo.org/api/dataset/764704 |
attribute | NC_GLOBAL | Northernmost_Northing | double | 68.0 |
attribute | NC_GLOBAL | param_mapping | String | {'764704': {'Lat': 'flag - latitude', 'Depth': 'flag - depth', 'Lon': 'flag - longitude'}} |
attribute | NC_GLOBAL | parameter_source | String | https://www.bco-dmo.org/mapserver/dataset/764704/parameters |
attribute | NC_GLOBAL | people_0_affiliation | String | University of California-Irvine |
attribute | NC_GLOBAL | people_0_affiliation_acronym | String | UC Irvine |
attribute | NC_GLOBAL | people_0_person_name | String | Adam Martiny |
attribute | NC_GLOBAL | people_0_person_nid | String | 51402 |
attribute | NC_GLOBAL | people_0_role | String | Principal Investigator |
attribute | NC_GLOBAL | people_0_role_type | String | originator |
attribute | NC_GLOBAL | people_1_affiliation | String | Woods Hole Oceanographic Institution |
attribute | NC_GLOBAL | people_1_affiliation_acronym | String | WHOI BCO-DMO |
attribute | NC_GLOBAL | people_1_person_name | String | Shannon Rauch |
attribute | NC_GLOBAL | people_1_person_nid | String | 51498 |
attribute | NC_GLOBAL | people_1_role | String | BCO-DMO Data Manager |
attribute | NC_GLOBAL | people_1_role_type | String | related |
attribute | NC_GLOBAL | project | String | Ocean_Stoichiometry |
attribute | NC_GLOBAL | projects_0_acronym | String | Ocean_Stoichiometry |
attribute | NC_GLOBAL | projects_0_description | String | NSF Award Abstract: Due to their sheer abundance and high activity, microorganisms have the potential to greatly influence how ecosystems are affected by changes in their environment. However, descriptions of microbial physiology and diversity are local and highly complex and thus rarely considered in Earth System Models. Thus, the researchers focus on a convergence research framework that can qualitatively and quantitatively integrate eco-evolutionary changes in microorganisms with global biogeochemistry. Here, the investigators will develop an approach that integrates the knowledge and tools of biologists, mathematicians, engineers, and geoscientists to understand the link between the ocean nutrient and carbon cycles. The integration of data and knowledge from diverse fields will provide a robust, biologically rich, and computationally efficient prediction for the variation in plankton resource requirements and the biogeochemical implications, addressing a fundamental challenge in ocean science. In addition, the project can serve as a road map for many other research groups facing a similar lack of convergence between biology and geoscience. Traditionally, the cellular elemental ratios of Carbon, Nitrogen, and Phosphorus (C:N:P) of marine communities have been considered static at Redfield proportions but recent studies have demonstrated strong latitudinal variation. Such regional variation may have large - but poorly constrained - implications for marine biodiversity, biogeochemical functioning, and atmospheric carbon dioxide levels. As such, variations in ocean community C:N:P may represent an important biological feedback. Here, the investigators propose a convergence research framework integrating cellular and ecological processes controlling microbial resource allocations with an Earth System model. The approach combines culture experiments and omics measurements to provide a molecular understanding of cellular resource allocations. Using a mathematical framework of increasing complexity describing communicating, moving demes, the team will quantify the extent to which local mixing, environmental heterogeneity and evolution lead to systematic deviations in plankton resource allocations and C:N:P. Optimization tools from engineering science will be used to facilitate the quantitative integration of models and observations across a range of scales and complexity levels. Finally, global ocean modeling will enable understanding of how plankton resource use impacts Earth System processes. By integrating data and knowledge across fields, scales and complexity, the investigators will develop a robust link between variation in plankton C:N:P and global biogeochemical cycles. |
attribute | NC_GLOBAL | projects_0_end_date | String | 2021-08 |
attribute | NC_GLOBAL | projects_0_name | String | Convergence: RAISE: Linking the adaptive dynamics of plankton with emergent global ocean biogeochemistry |
attribute | NC_GLOBAL | projects_0_project_nid | String | 764270 |
attribute | NC_GLOBAL | projects_0_start_date | String | 2018-09 |
attribute | NC_GLOBAL | publisher_name | String | Biological and Chemical Oceanographic Data Management Office (BCO-DMO) |
attribute | NC_GLOBAL | publisher_type | String | institution |
attribute | NC_GLOBAL | sourceUrl | String | (local files) |
attribute | NC_GLOBAL | Southernmost_Northing | double | -40.16724667 |
attribute | NC_GLOBAL | standard_name_vocabulary | String | CF Standard Name Table v55 |
attribute | NC_GLOBAL | summary | String | Surface ocean phosphate is commonly below the standard analytical detection limit (~100 nM) leading to an incomplete picture of the global variation and biogeochemical role of phosphate. This dataset represents a global compilation of phosphate measured using high-sensitivity methods including magnesium induced precipitation (MAGIC), liquid waveguide cell (LWCC), and solid phase extraction (SPE) methods. We compiled data from 42 major cruises covering all oligotrophic regions using high-sensitivity P measurements. The dataset covered a total of 50591 samples including 41747 samples from the upper 30 m. The compilations revealed several previously unrecognized low-P areas and clear regional biases. Our study demonstrates the importance of accurately quantifying nutrients for understanding the regulation of ocean ecosystems and biogeochemistry now and under future climate conditions. |
attribute | NC_GLOBAL | title | String | [High Sensitivity DIP] - Global distribution of phosphate using high sensitivity techniques from data aggregated from many studies between 1988-2017 (Convergence: RAISE: Linking the adaptive dynamics of plankton with emergent global ocean biogeochemistry) |
attribute | NC_GLOBAL | version | String | 1 |
attribute | NC_GLOBAL | Westernmost_Easting | double | -179.99976 |
attribute | NC_GLOBAL | xml_source | String | osprey2erddap.update_xml() v1.3 |
variable | latitude | double | ||
attribute | latitude | _CoordinateAxisType | String | Lat |
attribute | latitude | _FillValue | double | NaN |
attribute | latitude | actual_range | double | -40.16724667, 68.0 |
attribute | latitude | axis | String | Y |
attribute | latitude | bcodmo_name | String | latitude |
attribute | latitude | colorBarMaximum | double | 90.0 |
attribute | latitude | colorBarMinimum | double | -90.0 |
attribute | latitude | description | String | Latitude |
attribute | latitude | ioos_category | String | Location |
attribute | latitude | long_name | String | Latitude |
attribute | latitude | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P09/current/LATX/ |
attribute | latitude | standard_name | String | latitude |
attribute | latitude | units | String | degrees_north |
variable | longitude | double | ||
attribute | longitude | _CoordinateAxisType | String | Lon |
attribute | longitude | _FillValue | double | NaN |
attribute | longitude | actual_range | double | -179.99976, 179.5304133 |
attribute | longitude | axis | String | X |
attribute | longitude | bcodmo_name | String | longitude |
attribute | longitude | colorBarMaximum | double | 180.0 |
attribute | longitude | colorBarMinimum | double | -180.0 |
attribute | longitude | description | String | Longitude |
attribute | longitude | ioos_category | String | Location |
attribute | longitude | long_name | String | Longitude |
attribute | longitude | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P09/current/LONX/ |
attribute | longitude | standard_name | String | longitude |
attribute | longitude | units | String | degrees_east |
variable | depth | double | ||
attribute | depth | _CoordinateAxisType | String | Height |
attribute | depth | _CoordinateZisPositive | String | down |
attribute | depth | _FillValue | double | NaN |
attribute | depth | actual_range | double | 0.0, 5878.0 |
attribute | depth | axis | String | Z |
attribute | depth | bcodmo_name | String | depth |
attribute | depth | colorBarMaximum | double | 8000.0 |
attribute | depth | colorBarMinimum | double | -8000.0 |
attribute | depth | colorBarPalette | String | TopographyDepth |
attribute | depth | description | String | Sampling depth |
attribute | depth | ioos_category | String | Location |
attribute | depth | long_name | String | Depth |
attribute | depth | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P09/current/DEPH/ |
attribute | depth | positive | String | down |
attribute | depth | standard_name | String | depth |
attribute | depth | units | String | m |
variable | DIP | double | ||
attribute | DIP | _FillValue | double | NaN |
attribute | DIP | actual_range | double | 4.21138E-6, 3.003 |
attribute | DIP | bcodmo_name | String | Dissolved Inorganic Phosphate |
attribute | DIP | description | String | Dissolved inorganic phophate |
attribute | DIP | long_name | String | DIP |
attribute | DIP | units | String | micromolar (uM) |
variable | Year | short | ||
attribute | Year | _FillValue | short | 32767 |
attribute | Year | actual_range | short | 1988, 2017 |
attribute | Year | bcodmo_name | String | year |
attribute | Year | description | String | 4-digit year |
attribute | Year | long_name | String | Year |
attribute | Year | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/YEARXXXX/ |
attribute | Year | units | String | unitless |
variable | Month | String | ||
attribute | Month | bcodmo_name | String | month |
attribute | Month | description | String | 2-digit month |
attribute | Month | long_name | String | Month |
attribute | Month | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/MNTHXXXX/ |
attribute | Month | units | String | unitless |
variable | Day | String | ||
attribute | Day | bcodmo_name | String | day |
attribute | Day | description | String | 2-digit day |
attribute | Day | long_name | String | Day |
attribute | Day | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/DAYXXXXX/ |
attribute | Day | units | String | unitless |
variable | Date | int | ||
attribute | Date | _FillValue | int | 2147483647 |
attribute | Date | actual_range | int | 19881202, 20170808 |
attribute | Date | bcodmo_name | String | date |
attribute | Date | description | String | Date formatted as yyyymmdd |
attribute | Date | long_name | String | Date |
attribute | Date | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/ |
attribute | Date | units | String | unitless |
The information in the table above is also available in other file formats (.csv, .htmlTable, .itx, .json, .jsonlCSV1, .jsonlCSV, .jsonlKVP, .mat, .nc, .nccsv, .tsv, .xhtml) via a RESTful web service.