BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  Carbon flux for the Caribbean giant barrel sponge Xestospongia muta (Sponge-
loop)
  RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_685783)
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Files | Make a graph
 
Variable ?   Optional
Constraint #1 ?
Optional
Constraint #2 ?
   Minimum ?
 
   Maximum ?
 
 spongeid (unitless) ?          1    32
 watersampdate (unitless) ?              
 spongevolume (cubic centimeters (cm3)) ?          39703.27    289430.6
 volflow (milliliters/second (ml/s)) ?          2289.491    20357.71
 DOCin (micromolar (uM)) ?          58.71    123.7
 DOCex (micromolar (uM)) ?          51.66    87.4
 DOCconsumed (micromolar (uM)) ?          -16.32    57.03
 DOCre (percent) ?          -25.362    46.104
 frDOC (micromoles/second (umol/s)) ?          -98.7393    440.7157
 spFRdoc (micromoles/second/liter (umol/s/L sponge)) ?          -1.02801    3.45284
 POCin (micromolar (uM)) ?          7.50639    18.38664
 POCex (micromolar (uM)) ?          1.72277    5.49942
 POCconsumed (micromolar (uM)) ?          2.81028    16.03812
 POCre (percent) ?          33.81931    88.04695
 frPOC (micromoles/second (umol/s)) ?          10.24699    302.0567
 spFRpoc (micromoles/second/liter (umol/s/L sponge)) ?          0.16906    1.08025
 TOCin (micromolar (uM)) ?          69.23609    142.08664
 TOCex (micromolar (uM)) ?          55.28455    90.24603
 TOCconsumed (micromolar (uM)) ?          -9.89744    73.06812
 TOCre (percent) ?          -12.31813    51.42505
 frTOC (micromoles/second (umol/s)) ?          -59.88155    699.90648
 spFRtoc (micromoles/second/liter (umol/s/L sponge)) ?          -0.62345    4.42386
 
Server-side Functions ?
 distinct() ?
? (" ")

File type: (more info)

(Documentation / Bypass this form ? )
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  spongeid {
    Byte _FillValue 127;
    Byte actual_range 1, 32;
    String description "unique identifier for each sponge sampled";
    String ioos_category "Unknown";
    String long_name "Spongeid";
    String units "unitless";
  }
  watersampdate {
    String description "date of water sample formatted as yyyy-mm-dd";
    String ioos_category "Unknown";
    String long_name "Watersampdate";
    String source_name "watersampdate";
    String units "unitless";
  }
  spongevolume {
    Float32 _FillValue NaN;
    Float32 actual_range 39703.27, 289430.6;
    String description "volume of each sponge";
    String ioos_category "Unknown";
    String long_name "Spongevolume";
    String units "cubic centimeters (cm3)";
  }
  volflow {
    Float32 _FillValue NaN;
    Float32 actual_range 2289.491, 20357.71;
    String description "volume flow (i.e pumping rate) for each sponge";
    String ioos_category "Unknown";
    String long_name "Volflow";
    String units "milliliters/second (ml/s)";
  }
  DOCin {
    Float32 _FillValue NaN;
    Float32 actual_range 58.71, 123.7;
    String description "dissolved organic carbon in incurrent water samples";
    String ioos_category "Unknown";
    String long_name "DOCin";
    String units "micromolar (uM)";
  }
  DOCex {
    Float32 _FillValue NaN;
    Float32 actual_range 51.66, 87.4;
    String description "dissolved organic carbon in excurrent water samples";
    String ioos_category "Unknown";
    String long_name "DOCex";
    String units "micromolar (uM)";
  }
  DOCconsumed {
    Float32 _FillValue NaN;
    Float32 actual_range -16.32, 57.03;
    String description "dissolved organic carbon consumed by sponges";
    String ioos_category "Unknown";
    String long_name "DOCconsumed";
    String units "micromolar (uM)";
  }
  DOCre {
    Float32 _FillValue NaN;
    Float32 actual_range -25.362, 46.104;
    String description "sponge retention efficiency for dissolved organic carbon";
    String ioos_category "Unknown";
    String long_name "DOCre";
    String units "percent";
  }
  frDOC {
    Float32 _FillValue NaN;
    Float32 actual_range -98.7393, 440.7157;
    String description "sponge filtration rate of dissolved organic carbon";
    String ioos_category "Unknown";
    String long_name "Fr DOC";
    String units "micromoles/second (umol/s)";
  }
  spFRdoc {
    Float32 _FillValue NaN;
    Float32 actual_range -1.02801, 3.45284;
    String description "specific sponge filtration rate of dissolved organic carbon";
    String ioos_category "Unknown";
    String long_name "Sp FRdoc";
    String units "micromoles/second/liter (umol/s/L sponge)";
  }
  POCin {
    Float32 _FillValue NaN;
    Float32 actual_range 7.50639, 18.38664;
    String description "particulate organic carbon in incurrent water samples";
    String ioos_category "Unknown";
    String long_name "POCin";
    String units "micromolar (uM)";
  }
  POCex {
    Float32 _FillValue NaN;
    Float32 actual_range 1.72277, 5.49942;
    String description "particulate organic carbon in excurrent water samples";
    String ioos_category "Unknown";
    String long_name "POCex";
    String units "micromolar (uM)";
  }
  POCconsumed {
    Float32 _FillValue NaN;
    Float32 actual_range 2.81028, 16.03812;
    String description "particulate organic carbon consumed by sponges";
    String ioos_category "Unknown";
    String long_name "POCconsumed";
    String units "micromolar (uM)";
  }
  POCre {
    Float32 _FillValue NaN;
    Float32 actual_range 33.81931, 88.04695;
    String description "sponge retention efficiency for particulate organic carbon";
    String ioos_category "Unknown";
    String long_name "POCre";
    String units "percent";
  }
  frPOC {
    Float32 _FillValue NaN;
    Float32 actual_range 10.24699, 302.0567;
    String description "sponge filtration rate of particulate organic carbon";
    String ioos_category "Ocean Color";
    String long_name "Fr POC";
    String units "micromoles/second (umol/s)";
  }
  spFRpoc {
    Float32 _FillValue NaN;
    Float32 actual_range 0.16906, 1.08025;
    String description "specific sponge filtration rate of particulate organic carbon";
    String ioos_category "Unknown";
    String long_name "Sp FRpoc";
    String units "micromoles/second/liter (umol/s/L sponge)";
  }
  TOCin {
    Float64 _FillValue NaN;
    Float64 actual_range 69.23609, 142.08664;
    String description "total organic carbon in incurrent water samples";
    String ioos_category "Unknown";
    String long_name "TOCin";
    String units "micromolar (uM)";
  }
  TOCex {
    Float32 _FillValue NaN;
    Float32 actual_range 55.28455, 90.24603;
    String description "total organic carbon in excurrent water samples";
    String ioos_category "Unknown";
    String long_name "TOCex";
    String units "micromolar (uM)";
  }
  TOCconsumed {
    Float32 _FillValue NaN;
    Float32 actual_range -9.89744, 73.06812;
    String description "total organic carbon consumed by sponges";
    String ioos_category "Unknown";
    String long_name "TOCconsumed";
    String units "micromolar (uM)";
  }
  TOCre {
    Float32 _FillValue NaN;
    Float32 actual_range -12.31813, 51.42505;
    String description "sponge retention efficiency for total organic carbon";
    String ioos_category "Unknown";
    String long_name "TOCre";
    String units "percent";
  }
  frTOC {
    Float64 _FillValue NaN;
    Float64 actual_range -59.88155, 699.90648;
    String description "sponge filtration rate of total organic carbon";
    String ioos_category "Unknown";
    String long_name "Fr TOC";
    String units "micromoles/second (umol/s)";
  }
  spFRtoc {
    Float32 _FillValue NaN;
    Float32 actual_range -0.62345, 4.42386;
    String description "specific sponge filtration rate of total organic carbon";
    String ioos_category "Unknown";
    String long_name "Sp FRtoc";
    String units "micromoles/second/liter (umol/s/L sponge)";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv";
    String acquisition_description 
"Suspension feeding by Xestospongia muta was investigated in situ on Conch Reef
(24\\u00b056\\u201959\\u201dN; 80\\u00b027\\u201913\\u201dW), Key Largo, Florida in
June of 2013. Food availability is known to vary temporally on Conch Reef
(e.g. McMurray et al. 2016); therefore, a total of 32 individuals were
haphazardly selected for study at 20 m depth over the course of 6 days (5-6
sponges day-1) to quantify feeding rates over a large natural range of food
abundances. Individuals spanned a broad range of sizes, however only
individuals with a single osculum were included.
 
A total of 1 L of both incurrent (ambient) and excurrent seawater was
collected from each sponge over a 5 minute sampling interval with paired 100
mL syringes as previously described (McMurray et al. 2016). Following seawater
sample collection, the dimensions of each sponge were measured and the
morphology of X. muta was approximated as a frustum of a cone to obtain sponge
volume estimates (McMurray, Blum & Pawlik 2008). Estimates of sponge pumping
rates were derived from the equation Q = 0.02 V1.1 (P < 0.001, R2 = 0.78;
McMurray et al. 2014), where Q is the pumping rate (ml s-1) and V is sponge
volume (cm3)
 
Particulate and dissolved organic carbon (POC and DOC, respectively) in
incurrent and excurrent seawater was quantified as previously described
(McMurray et al. 2016). Briefly, each sample was filtered through a 100
\\u03bcm mesh and subsequently through a pre-combusted GF/F glass fiber filter.
In the laboratory, POC on filters was measured using a CE Elantech NC2100
elemental analyzer; DOC in filtrate samples was measured using high
temperature catalytic oxidation with a Shimadzu TOC 5050 analyzer.
Xestospongia muta hosts symbiotic microbes which may contribute to DOC
retention rates (Maldonado, Ribes & van Duyl 2012); therefore carbon flux
estimates reported here consider the sponge as a holobiont.
 
To assess the effects of sponge feeding on POC and DOC, differences in the
concentration of each food type between incurrent and excurrent seawater were
analyzed using paired t-tests. For each sponge, POC and DOC consumed were
calculated as the difference between the quantities of each food resource in
incurrent and excurrent seawater samples. To investigate selective feeding on
food resource types, and if relative foraging effort between food resources
varied as a function of relative food availability (McMurray et al. 2016), the
log10-transformed ratio of POC:DOC consumed was regressed against the
log10-transformed ratio of incurrent POC:DOC concentration (van Leeuwen et al.
2013). A one-tailed t-test was used to test if the slope of this regression
was greater than a slope of 1 to examine frequency-dependent food consumption.
 
Retention efficiency of each food resource was calculated as:
 
RE =\\u00a0(Cin\\u00a0-\\u00a0Cex)/Cin x 100
 
where RE is the retention efficiency (%), and Cin and Cex are the incurrent
and excurrent quantities of each food resource (\\u03bcM), respectively. The
filtration rate for each food resource was calculated as:\\u00a0
 
FR = (Cin\\u00a0-\\u00a0Cex) x Q
 
where FR is the filtration rate (\\u03bcmol C s-1). Ordinary least squares
regression was used to examine how filtration rates for each food resource
scaled with sponge size. Filtration rates were standardized by sponge volume
to obtain specific filtration rates (\\u03bcmol C s-1 L-1). The relationship
between specific filtration rate and loge-transformed incurrent food abundance
for each food resource was described by ordinary least squares regression.
 
These data\\u00a0were published in:  
 McMurray, S.E. 2015. The Dynamics of Sponge Populations and Benthic-pelagic
Carbon Flux on Coral Reefs. Ph.D. Dissertation. University of North Carolina
Wilmington.
 
\\u00a0";
    String awards_0_award_nid "676142";
    String awards_0_award_number "OCE-1558580";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1558580";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Dr Michael E. Sieracki";
    String awards_0_program_manager_nid "50446";
    String cdm_data_type "Other";
    String comment 
"Carbon flux for the Caribbean giant barrel sponge Xestospongia muta 
   C. Finelli (UNC-W) 
   version: 2017-03-27";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.2d  13 Jun 2019";
    String date_created "2017-03-24T18:06:46Z";
    String date_modified "2018-10-03T18:58:57Z";
    String defaultDataQuery "&time";
    String doi "10.1575/1912/bco-dmo.685952";
    String history 
"2019-08-19T03:23:21Z (local files)
2019-08-19T03:23:21Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_685783.html";
    String infoUrl "https://www.bco-dmo.org/dataset/685783";
    String institution "BCO-DMO";
    String instruments_0_dataset_instrument_description "Used to measure POC";
    String instruments_0_dataset_instrument_nid "685793";
    String instruments_0_description "Instruments that quantify carbon, nitrogen and sometimes other elements by combusting the sample at very high temperature and assaying the resulting gaseous oxides. Usually used for samples including organic material.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB01/";
    String instruments_0_instrument_name "Elemental Analyzer";
    String instruments_0_instrument_nid "546339";
    String instruments_0_supplied_name "CE Elantech NC2100 elemental analyzer";
    String instruments_1_dataset_instrument_description "Used to measure DOC";
    String instruments_1_dataset_instrument_nid "685794";
    String instruments_1_description "Instruments that quantify carbon, nitrogen and sometimes other elements by combusting the sample at very high temperature and assaying the resulting gaseous oxides. Usually used for samples including organic material.";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB01/";
    String instruments_1_instrument_name "Elemental Analyzer";
    String instruments_1_instrument_nid "546339";
    String instruments_1_supplied_name "Shimadzu TOC 5050 analyzer";
    String keywords "bco, bco-dmo, biological, chemical, color, commerce, data, dataset, department, dmo, doc, docconsumed, docex, docin, docre, erddap, frdoc, frpoc, frtoc, management, ocean, ocean color, oceanography, office, poc, pocconsumed, pocex, pocin, pocre, preliminary, spFRdoc, spFRpoc, spFRtoc, spongeid, spongevolume, time, toc, tocconsumed, tocex, tocin, tocre, volflow, watersampdate";
    String license 
"The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.";
    String metadata_source "https://www.bco-dmo.org/api/dataset/685783";
    String param_mapping "{'685783': {}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/685783/parameters";
    String people_0_affiliation "University of North Carolina - Wilmington";
    String people_0_affiliation_acronym "UNC-Wilmington";
    String people_0_person_name "Christopher Finelli";
    String people_0_person_nid "676145";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "University of North Carolina - Wilmington";
    String people_1_affiliation_acronym "UNC-Wilmington";
    String people_1_person_name "Steven McMurray";
    String people_1_person_nid "685690";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "University of North Carolina - Wilmington";
    String people_2_affiliation_acronym "UNC-Wilmington";
    String people_2_person_name "Dr Joseph Pawlik";
    String people_2_person_nid "632984";
    String people_2_role "Co-Principal Investigator";
    String people_2_role_type "originator";
    String people_3_affiliation "University of North Carolina - Wilmington";
    String people_3_affiliation_acronym "UNC-Wilmington";
    String people_3_person_name "Steven McMurray";
    String people_3_person_nid "685690";
    String people_3_role "Contact";
    String people_3_role_type "related";
    String people_4_affiliation "Woods Hole Oceanographic Institution";
    String people_4_affiliation_acronym "WHOI BCO-DMO";
    String people_4_person_name "Nancy Copley";
    String people_4_person_nid "50396";
    String people_4_role "BCO-DMO Data Manager";
    String people_4_role_type "related";
    String project "Testing the sponge-loop hypothesis for Caribbean coral reefs";
    String projects_0_acronym "sponge-loop";
    String projects_0_description 
"NSF Abstract:
Sponges are bottom-dwelling animals that dominate Caribbean reefs now that reef-building corals have been declining for decades. Sponges feed by filtering huge volumes of seawater, providing a mechanism for recycling organic material back to the reef. A new theory has been proposed called the \"sponge-loop hypothesis\" that is potentially the most important new concept in marine ecology in many years, because it seeks to explain Darwin's Paradox: how do highly productive and diverse coral reefs grow in desert-like tropical seas? The sponge loop hypothesis proposes that sponges on coral reefs absorb the large quantities of dissolved organic carbon (molecules such as carbohydrates) that are released by seaweeds and corals and return it to the reef as particles in the form of living and dead cells, or other cellular debris. This project will use a rigorous set of techniques to test the sponge-loop hypothesis in the field on ten of the largest and most common sponges on Caribbean reefs. For each species, the contributions of particles and dissolved organic carbon to sponge nutrition will be measured, as well as the production of cellular particles in the seawater flowing out of the sponge. For selected sponge species, the concentration of dissolved organic carbon entering the sponge will be experimentally enhanced to determine the capacity of the sponge to absorb this potential food source, and to gauge its effect on the production of cellular particles. This project will provide STEM education and training for postdoctoral, graduate and undergraduate students and public outreach in the form of easily accessible educational videos. Further, this project is important for understanding the carbon cycle on coral reefs where the effects of climate change and ocean acidification may be tipping the competitive balance toward non-reef-building organisms, such as sponges.
The cycling of carbon from the water-column to the benthos is central to marine ecosystem function; for coral reefs, this process begins with photosynthesis by seaweeds and coral symbionts, which then exude a substantial portion of fixed carbon as dissolved organic carbon (DOC) that may be lost to currents and tides. But if sponges, with their enormous water filtering capacity, can return DOC from the water column to the reef, it would represent a major unrecognized source of carbon cycling. The \"sponge-loop hypothesis\" has the potential to transform our understanding of carbon cycling on coral reefs. Building on preliminary data from studies of the giant barrel sponge, this project will investigate each of the three components of the sponge-loop hypothesis for ten common barrel, vase and tube-forming species that span a range of associations with microbial symbionts, from high microbial abundance (HMA) to low microbial abundance (LMA) in the sponge tissue. Specifically, the experimental approach will include InEx techniques (comparative sampling of seawater immediately before and after passage through the sponge), velocimetry, and flow cytometry to determine whether each species consumes DOC and produces particulate organic carbon (POC) in the form of cellular detritus. Then, for species that consume DOC, the same techniques will be used in manipulative experiments that augment the amount of DOC from three categories (labile, semi-labile and refractory) to determine the types of DOC consumed by sponges. In addition to testing the sponge-loop hypothesis, this project will use molecular techniques to investigate the differences among HMA and LMA sponge species, targeting the microbial symbionts that may be responsible for DOC uptake.";
    String projects_0_end_date "2019-01";
    String projects_0_geolocation "Conch Reef, Key Largo, Florida, USA; Carrie Bow Cay, Belize";
    String projects_0_name "Testing the sponge-loop hypothesis for Caribbean coral reefs";
    String projects_0_project_nid "676143";
    String projects_0_start_date "2016-02";
    String publisher_name "Nancy Copley";
    String publisher_role "BCO-DMO Data Manager(s)";
    String sourceUrl "(local files)";
    String standard_name_vocabulary "CF Standard Name Table v29";
    String summary 
"This dataset includes flux measurements of dissolved, particulate and total
organic carbon associated with the Caribbean giant barrel sponge Xestospongia
muta on Conch Reef, Key Largo, FL in June 2013.";
    String title "Carbon flux for the Caribbean giant barrel sponge Xestospongia muta (Sponge-loop)";
    String version "1";
    String xml_source "osprey2erddap.update_xml() v1.5-beta";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 1.82
Disclaimers | Privacy Policy | Contact