BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Geolocation, abundance, and morphology data from Carrie Bow Caye in the
Belizean Barrier Reef.
  RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_705432)
Range: depth = 3.1 to 28.4m
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1 +1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? (" ")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Y Axis Minimum:   Maximum:   Ascending: 
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    [The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  reef_zone {
    String description "Description of the reef zone where sample was taken";
    String ioos_category "Unknown";
    String long_name "Reef Zone";
    String units "unitless";
  }
  date {
    String description "Date sample was taken; YYYY/MM/DD";
    String ioos_category "Time";
    String long_name "Date";
    String source_name "date";
    String units "unitless";
  }
  lunar_day {
    Byte _FillValue 127;
    Byte actual_range 1, 29;
    String description "Lunar day sample was taken";
    String ioos_category "Time";
    String long_name "Lunar Day";
    String units "unitless";
  }
  waypoint_ID {
    Int16 _FillValue 32767;
    Int16 actual_range 92, 795;
    String description "PI issued location ID; Each sponge is at a different location";
    String ioos_category "Identifier";
    String long_name "Waypoint ID";
    String units "unitless";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 3.1, 28.4;
    String axis "Z";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Depth at the base of the sponge";
    String ioos_category "Location";
    String long_name "Depth";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  sponge_tubes {
    Byte _FillValue 127;
    Byte actual_range 1, 8;
    String description "Number of tubes per sponge";
    String ioos_category "Unknown";
    String long_name "Sponge Tubes";
    String units "count";
  }
  Fish_1_0 {
    Byte _FillValue 127;
    Byte actual_range 0, 1;
    String description "Fish are (1) present or (0) absent from the sponge";
    String ioos_category "Unknown";
    String long_name "Fish 1 0";
    String units "unitless";
  }
  fish_n {
    Byte _FillValue 127;
    Byte actual_range 0, 6;
    String description "Number of fish per sponge";
    String ioos_category "Statistics";
    String long_name "Fish N";
    String units "count";
  }
  residents_1_0 {
    Byte _FillValue 127;
    Byte actual_range 0, 1;
    String description "Residents are (1) present or (0) absent from the sponge";
    String ioos_category "Unknown";
    String long_name "Residents 1 0";
    String units "unitless";
  }
  residents_n {
    Byte _FillValue 127;
    Byte actual_range 0, 5;
    String description "Number of residents per sponge";
    String ioos_category "Statistics";
    String long_name "Residents N";
    String units "count";
  }
  settlers_1_0 {
    Byte _FillValue 127;
    Byte actual_range 0, 1;
    String description "Settlers are (1) present or (0) absent from the sponge";
    String ioos_category "Unknown";
    String long_name "Settlers 1 0";
    String units "unitless";
  }
  settlers_n {
    Byte _FillValue 127;
    Byte actual_range 0, 2;
    String description "Number of settlers per sponge";
    String ioos_category "Statistics";
    String long_name "Settlers N";
    String units "count";
  }
  pairs_1_0 {
    Byte _FillValue 127;
    Byte actual_range 0, 1;
    String description "Pairs are (1) present or (0) absent from the sponge";
    String ioos_category "Unknown";
    String long_name "Pairs 1 0";
    String units "unitless";
  }
  tube_length {
    Byte _FillValue 127;
    Byte actual_range 1, 96;
    String description "Length of the sponge tube";
    String ioos_category "Unknown";
    String long_name "Tube Length";
    String units "centimeters";
  }
  tube_width {
    Byte _FillValue 127;
    Byte actual_range 1, 14;
    String description "Widthe of the sponge tube";
    String ioos_category "Unknown";
    String long_name "Tube Width";
    String units "centimeters";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv";
    String acquisition_description 
"We surveyed a 100 m wide by 300 m long transect of reef around Carrie Bow Cay
by SCUBA to map the distribution of
the\\u00a0Aplysina\\u00a0fistularis\\u00a0and\\u00a0Elacatinus\\u00a0lori\\u00a0populations.
GPS data were collected with a Garmin GPSMAP 76Cx unit in an underwater
housing made by Sound Ocean Systems. Waypoints are accurate within 5 m. At
each sponge, we recorded: depth at\\u00a0base\\u00a0of sponge (in meters, using
dive computers),\\u00a0number\\u00a0of tubes per sponge, length (nearest cm,
using a tape measure) and width (nearest cm, using a tape measure) of each
sponge tube. We also counted the number of fish per sponge, and categorized
fish into one of two life history stages: resident \\u2265 18 mm standard
length (SL) or settler < 18 mm SL. Divers were trained to visually identify
settlers versus residents after measuring a subset of individuals with
calipers. We expect accuracy to be high, as this categorization was correlated
with a life history transition: settlers tend to live on the outside of
sponges, and residents live on the inside of sponges. Further details on
methods can be found in D\\u2019Aloia et al. (2011),\\u00a0Coral Reefs.";
    String awards_0_award_nid "544434";
    String awards_0_award_number "OCE-1260424";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1260424";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Dr David  L. Garrison";
    String awards_0_program_manager_nid "50534";
    String cdm_data_type "Other";
    String comment 
"Goby Data 
  P. Buston and C. D'Aloia, PIs 
  Version 14 June 2017";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.2d  13 Jun 2019";
    String date_created "2017-06-15T21:11:33Z";
    String date_modified "2019-03-27T20:33:22Z";
    String defaultDataQuery "&time";
    String doi "10.1575/1912/bco-dmo.705432.1";
    Float64 geospatial_vertical_max 28.4;
    Float64 geospatial_vertical_min 3.1;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2019-06-25T09:24:59Z (local files)
2019-06-25T09:24:59Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_705432.das";
    String infoUrl "https://www.bco-dmo.org/dataset/705432";
    String institution "BCO-DMO";
    String keywords "bco, bco-dmo, biological, chemical, data, dataset, date, day, depth, dmo, erddap, fish, Fish_1_0, fish_n, identifier, length, lunar, lunar_day, management, oceanography, office, pairs, pairs_1_0, preliminary, reef, reef_zone, residents, residents_1_0, residents_n, settlers, settlers_1_0, settlers_n, sponge, sponge_tubes, statistics, time, tube, tube_length, tube_width, tubes, waypoint, waypoint_ID, width, zone";
    String license 
"The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.";
    String metadata_source "https://www.bco-dmo.org/api/dataset/705432";
    String param_mapping "{'705432': {'depth': 'master - depth'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/705432/parameters";
    String people_0_affiliation "Boston University";
    String people_0_affiliation_acronym "BU";
    String people_0_person_name "Dr Peter Buston";
    String people_0_person_nid "544437";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Woods Hole Oceanographic Institution";
    String people_1_affiliation_acronym "WHOI";
    String people_1_person_name "Dr Cassidy C. D'Aloia";
    String people_1_person_nid "704789";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Boston University";
    String people_2_affiliation_acronym "BU";
    String people_2_person_name "Dr Peter Buston";
    String people_2_person_nid "544437";
    String people_2_role "Contact";
    String people_2_role_type "related";
    String people_3_affiliation "Woods Hole Oceanographic Institution";
    String people_3_affiliation_acronym "WHOI BCO-DMO";
    String people_3_person_name "Hannah Ake";
    String people_3_person_nid "650173";
    String people_3_role "BCO-DMO Data Manager";
    String people_3_role_type "related";
    String project "An Integrative Investigation of Population Connectivity Using a Coral Reef Fish";
    String projects_0_acronym "Elacatinus Dispersal I";
    String projects_0_description 
"Understanding the patterns, causes and consequences of larval dispersal is a major goal of 21st century marine ecology. Patterns of dispersal determine the rates of larval exchange, or connectivity, between populations. Both physical factors (e.g., water movement) and biological factors (e.g., larval behavior) cause variation in population connectivity. Population connectivity, in turn, has major consequences for all aspects of an organism's biology, from individual behavior to metapopulation dynamics, and from evolution within metapopulations to the origin and extinction of species. Further, understanding population connectivity is critical for the design of effective networks of marine reserves,�creation of�vital tools in conservation, and the development of sustainable fisheries.
Over the last decade, three methods, each of which tells something slightly different, have emerged as leading contenders to provide the greatest insights into population connectivity. First, coupled biophysical models make assumptions regarding water flow, larval behavior and ecology, to predict population connectivity. Second, indirect genetic methods use spatial distributions of allele frequencies to infer population connectivity. Third, direct genetic methods use parentage analyses, tracing recruits to specific adults, to measure population connectivity. Despite advances, lack of integration means that we do not know the predictive skill of biophysical models, or the extent to which patterns of dispersal predict spatial genetic structure. The overall objective of this proposal is to conduct an integrated investigation of population connectivity, using all three methods in one tractable system: the neon goby, Elacatinus lori, on the Belizean Barrier Reef. There are three motives for this choice of study system: i) fourteen highly polymorphic microsatellite loci have been developed, facilitating the assignment of recruits to parents using parentage analyses and the measurement of dispersal; ii) the physical oceanography of the Belizean Barrier Reef is well-studied, facilitating the development and testing of coupled biophysical models; and, iii) E. lori has a relatively small biogeographic range, facilitating analysis of the spatial distribution of allele frequencies throughout its range.
Broader Impacts. The grant will support one postdoc and two graduate students who will be trained in scientific diving, marine fieldwork, population genetics, biophysical modeling, and mathematical modeling, and will gain collaborative research experience. PIs will incorporate research findings in their courses, which cover all these topics. The grant will also broaden participation of under-represented groups by supporting six undergraduates from groups traditionally underrepresented in STEM fields. In each year of the project there will be an All Participants meeting to reinforce the network of participants. A project website will be developed, in English and Spanish, on the theme of larval dispersal and population connectivity. This will include a resource for K-12 marine science educators developed in collaboration with a marine science educator. All PIs will ensure that results are broadly disseminated to the scientific community and general public via appropriate forms of media.";
    String projects_0_end_date "2017-02";
    String projects_0_geolocation "Belizean Barrier Reef System (16.803 degrees North  88.096 degrees West)";
    String projects_0_name "An Integrative Investigation of Population Connectivity Using a Coral Reef Fish";
    String projects_0_project_nid "544435";
    String projects_0_project_website "http://people.bu.edu/buston/lab/Welcome.html";
    String projects_0_start_date "2013-03";
    String publisher_name "Hannah Ake";
    String publisher_role "BCO-DMO Data Manager(s)";
    String sourceUrl "(local files)";
    String standard_name_vocabulary "CF Standard Name Table v29";
    String summary "Geolocation, abundance, and morphology data from Carrie Bow Caye in the Belizean Barrier Reef.";
    String title "Geolocation, abundance, and morphology data from Carrie Bow Caye in the Belizean Barrier Reef.";
    String version "1";
    String xml_source "osprey2erddap.update_xml() v1.5-beta";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 1.82
Disclaimers | Privacy Policy | Contact