BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Chemical data associated with field collections from the Gulf of Maine, Nauset
Marsh Estuary System, and Long Island Sound (Alexandrium isotopes project)
  RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_712027)
Range: depth = 0.5 to 90.0m
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1 +1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? (" ")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Y Axis Minimum:   Maximum:   Ascending: 
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    [The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Date {
    String description "Date sample was taken; YYYY/MM/DD";
    String ioos_category "Time";
    String long_name "Date";
    String source_name "Date";
    String units "unitless";
  }
  Sample_ID {
    String description "Sample ID; short name/abbreviation";
    String ioos_category "Identifier";
    String long_name "Sample ID";
    String units "unitless";
  }
  Description {
    String description "Full description of site and station where sample was taken";
    String ioos_category "Unknown";
    String long_name "Description";
    String units "unitless";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 0.5, 90.0;
    String axis "Z";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Depth that sample was taken";
    String ioos_category "Location";
    String long_name "Depth";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  d15N_NO3 {
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Stable isotope value; d15N - NO3";
    String ioos_category "Dissolved Nutrients";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String units "per mil (0/00)";
  }
  d18O_NO3 {
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Stable isotope value; d18O - NO3";
    String ioos_category "Dissolved Nutrients";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String units "per mil (0/00)";
  }
  d15N_NH4 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.4, 17.9;
    Float64 colorBarMaximum 5.0;
    Float64 colorBarMinimum 0.0;
    String description "Stable isotope value; d15N - NH4";
    String ioos_category "Dissolved Nutrients";
    String long_name "Mole Concentration Of Ammonium In Sea Water";
    String units "per mil (0/00)";
  }
  d15N_POM {
    String description "Stable isotope value; d15N - POM";
    String ioos_category "Statistics";
    String long_name "D15 N POM";
    String units "per mil (0/00)";
  }
  NO3 {
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Dissolved nutrient concentration; NO3-";
    String ioos_category "Dissolved Nutrients";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String units "micromoles per liter";
  }
  NH4 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 18.9;
    Float64 colorBarMaximum 5.0;
    Float64 colorBarMinimum 0.0;
    String description "Dissolved nutrient concentration; NH4";
    String ioos_category "Dissolved Nutrients";
    String long_name "Mole Concentration Of Ammonium In Sea Water";
    String units "micromoles per liter";
  }
  PO4 {
    String description "Dissolved nutrient concentration; PO4";
    String ioos_category "Dissolved Nutrients";
    String long_name "Mass Concentration Of Phosphate In Sea Water";
    String units "micromoles per liter";
  }
  Silicate {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 41.8;
    String description "Dissolved nutrient concentration; Silicate";
    String ioos_category "Dissolved Nutrients";
    String long_name "Mass Concentration Of Silicate In Sea Water";
    String units "micromoles per liter";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv";
    String acquisition_description 
"Stable Isotope Methods for d15N-NO3-, d18O-NO3-, d15N-POM, and d15N-NH4+: All
filters, glassware, and glass vials used for isotope analysis were pre-
combusted for 4 hours at 450C and plastic bottles were acid washed in a 10%
HCl bath overnight, to eliminate any crossover N. In preparation for stable
isotope analysis, raw seawater was filtered onto a glass fiber filter (25-mm
diameter, Whatman GF/D, Cat #: 1823010) to separate particulate organic matter
(POM) and dissolved fractions (NO3- and NH4+). Filters were transferred into
20-ml glass vials (Fisher, catalog #05-719-117) and frozen at -20C until
isotope analysis of POM (15NPOM). Filtrate, 200 ml, for isotope analysis of
dissolved NH4+ (15NNH4+) was processed using a modified version of the NH4+
diffusion method of Holmes (1998), whereby polypropylene membrane filters (25
mm, lot #: 151579, Sterlitech) replaced Teflon filters (Hannon and Bohlke
2008). Isotope analysis of NH4+ and POM was performed on a Finnigan-MAT
DeltaPlus Isotope Ratio Monitoring Mass Spectrometer coupled with a Carlo Erba
NC 2500 Elemental Analyzer (Model 1108) (Organic Mass Spectrometry Facility,
WHOI). Depending on the expected amount of N per sample, the instrument was
configured for the typical range of detection, 0.5 to 5 moles N, or modified
at the EA combustion furnace to reach a lower detection limit, 0.15 umoles N
(Houghton et al. 2000, Holtvoeth et al. 2005, 2006, York et al. 2007). The
precision of 15N measurements on this instrument was 0.17\\u2030. Filtrate, 20
ml for N and O stable isotope analysis of dissolved nitrate (15NNO3-) was
transferred into duplicate 30-ml HDPE bottles and analyzed by bacteria
denitrification assay using ThermoFinnigan GasBench + PreCon trace gas
concentration system interfaced to a ThermoScientific Delta V Plus isotope-
ratio mass spectrometer (Bremen, Germany) (UC Davis Stable Isotope Facility).
 
Methods for nutrient quantification: Dissolved nutrient samples were filtered
through a glass fiber filter (25-mm diameter, Whatman GF/F, CAT No. 1825-025).
The filtrate was collected in acid-washed 20-ml scintillation vials for
nutrient analysis and then frozen at -20 deg C until analysis. A SEAL AA3
four-channel segmented flow analyzer (Nutrient Chemical Facility, Woods Hole
Oceanographic Institution, WHOI) was used to quantify NH4+, NO3-/NO2-,
Silicate, and PO43- in the GF/F-filtered medium using standard methods.";
    String awards_0_award_nid "700442";
    String awards_0_award_number "OCE-1505604";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1505604";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Dr Henrietta N Edmonds";
    String awards_0_program_manager_nid "51517";
    String awards_1_award_nid "700452";
    String awards_1_award_number "OCE-1232835";
    String awards_1_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1232835";
    String awards_1_funder_name "NSF Division of Ocean Sciences";
    String awards_1_funding_acronym "NSF OCE";
    String awards_1_funding_source_nid "355";
    String awards_1_program_manager "Dr Henrietta N Edmonds";
    String awards_1_program_manager_nid "51517";
    String cdm_data_type "Other";
    String comment 
"Chemical data 
  J. Smith, D. Anderson, D. Erdner, and J. McClelland, PIs 
  Version 3 August 2017";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.2d  13 Jun 2019";
    String date_created "2017-08-03T17:58:49Z";
    String date_modified "2019-03-20T16:01:03Z";
    String defaultDataQuery "&time";
    String doi "10.1575/1912/bco-dmo.712027.1";
    Float64 geospatial_vertical_max 90.0;
    Float64 geospatial_vertical_min 0.5;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2019-08-19T18:08:20Z (local files)
2019-08-19T18:08:20Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_712027.das";
    String infoUrl "https://www.bco-dmo.org/dataset/712027";
    String institution "BCO-DMO";
    String instruments_0_acronym "IR Mass Spec";
    String instruments_0_dataset_instrument_description "Used to analyze N and O stable isotopes";
    String instruments_0_dataset_instrument_nid "712041";
    String instruments_0_description "The Isotope-ratio Mass Spectrometer is a particular type of mass spectrometer used to measure the relative abundance of isotopes in a given sample (e.g. VG Prism II Isotope Ratio Mass-Spectrometer).";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB16/";
    String instruments_0_instrument_name "Isotope-ratio Mass Spectrometer";
    String instruments_0_instrument_nid "469";
    String instruments_0_supplied_name "ThermoScientific Delta V Plus isotope-ratio mass spectrometer";
    String instruments_1_acronym "IR Mass Spec";
    String instruments_1_dataset_instrument_description "Used to perform isotope analysis of NH4+�and POM";
    String instruments_1_dataset_instrument_nid "712039";
    String instruments_1_description "The Isotope-ratio Mass Spectrometer is a particular type of mass spectrometer used to measure the relative abundance of isotopes in a given sample (e.g. VG Prism II Isotope Ratio Mass-Spectrometer).";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB16/";
    String instruments_1_instrument_name "Isotope-ratio Mass Spectrometer";
    String instruments_1_instrument_nid "469";
    String instruments_1_supplied_name "Finnigan-MAT DeltaPlus Isotope Ratio Monitoring Mass Spectrometer";
    String instruments_2_acronym "Gas Analyzer";
    String instruments_2_dataset_instrument_description "Used to analyze N and O stable isotopes";
    String instruments_2_dataset_instrument_nid "712042";
    String instruments_2_description "Gas Analyzers - Instruments for determining the qualitative and quantitative composition of gas mixtures.";
    String instruments_2_instrument_name "Gas Analyzer";
    String instruments_2_instrument_nid "720";
    String instruments_2_supplied_name "ThermoFinnigan GasBench + PreCon trace gas concentration system";
    String instruments_3_dataset_instrument_description "Used to perform isotope analysis of NH4+�and POM�";
    String instruments_3_dataset_instrument_nid "712040";
    String instruments_3_description "Instruments that quantify carbon, nitrogen and sometimes other elements by combusting the sample at very high temperature and assaying the resulting gaseous oxides. Usually used for samples including organic material.";
    String instruments_3_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB01/";
    String instruments_3_instrument_name "Elemental Analyzer";
    String instruments_3_instrument_nid "546339";
    String instruments_3_supplied_name "Carlo Erba NC 2500 Elemental Analyzer (Model 1108)";
    String instruments_4_acronym "CFA";
    String instruments_4_dataset_instrument_description "Used to quantify�NH4+, NO3-/NO2-, Silicate, and PO43-";
    String instruments_4_dataset_instrument_nid "712043";
    String instruments_4_description "A sample is injected into a flowing carrier solution passing rapidly through small-bore tubing.�";
    String instruments_4_instrument_name "Continuous Flow Analyzer";
    String instruments_4_instrument_nid "661968";
    String instruments_4_supplied_name "SEAL AA3 four-channel segmented flow analyzer";
    String keywords "ammonia, ammonium, bco, bco-dmo, biological, chemical, chemistry, concentration, d15, d15N_NH4, d15N_NO3, d15N_POM, d18O_NO3, data, dataset, date, depth, description, dissolved, dissolved nutrients, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Ammonia, Earth Science > Oceans > Ocean Chemistry > Nitrate, Earth Science > Oceans > Ocean Chemistry > Phosphate, Earth Science > Oceans > Ocean Chemistry > Silicate, erddap, identifier, management, mass, mass_concentration_of_phosphate_in_sea_water, mass_concentration_of_silicate_in_sea_water, model, mole, mole_concentration_of_ammonium_in_sea_water, mole_concentration_of_nitrate_in_sea_water, n02, nh4, nitrate, no3, nutrients, ocean, oceanography, oceans, office, phosphate, po4, pom, preliminary, princeton, sample, Sample_ID, science, sea, seawater, silicate, statistics, time, water";
    String keywords_vocabulary "GCMD Science Keywords";
    String license 
"The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.";
    String metadata_source "https://www.bco-dmo.org/api/dataset/712027";
    String param_mapping "{'712027': {'Depth': 'master - depth'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/712027/parameters";
    String people_0_affiliation "Virginia Institute of Marine Science";
    String people_0_affiliation_acronym "VIMS";
    String people_0_person_name "Dr Juliette L. Smith";
    String people_0_person_nid "700445";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Woods Hole Oceanographic Institution";
    String people_1_affiliation_acronym "WHOI";
    String people_1_person_name "Dr Donald M. Anderson";
    String people_1_person_nid "51236";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "University of Texas - Marine Science Institute";
    String people_2_affiliation_acronym "UTMSI";
    String people_2_person_name "Dr Deana L. Erdner";
    String people_2_person_nid "700454";
    String people_2_role "Co-Principal Investigator";
    String people_2_role_type "originator";
    String people_3_affiliation "University of Texas - Marine Science Institute";
    String people_3_affiliation_acronym "UTMSI";
    String people_3_person_name "Dr James W. McClelland";
    String people_3_person_nid "700456";
    String people_3_role "Co-Principal Investigator";
    String people_3_role_type "originator";
    String people_4_affiliation "Virginia Institute of Marine Science";
    String people_4_affiliation_acronym "VIMS";
    String people_4_person_name "Dr Juliette L. Smith";
    String people_4_person_nid "700445";
    String people_4_role "Contact";
    String people_4_role_type "related";
    String people_5_affiliation "Woods Hole Oceanographic Institution";
    String people_5_affiliation_acronym "WHOI BCO-DMO";
    String people_5_person_name "Hannah Ake";
    String people_5_person_nid "650173";
    String people_5_role "BCO-DMO Data Manager";
    String people_5_role_type "related";
    String project "Collaborative Research: Identification of nitrogen sources for toxic Alexandrium blooms using a novel species-specific tracer, d15N-saxitoxin";
    String projects_0_acronym "Alexandrium-isotopes";
    String projects_0_description 
"NSF award abstract:
The US and other countries throughout the world are affected by harmful algal blooms (HABs) that negatively impact human health, marine ecosystems, fisheries resources, and local economies. Anthropogenic nutrient loadings have been linked to expanding HAB incidence, but the relationship is site- and organism-specific, and is still poorly understood. The main challenge in this regard is to determine the relative importance of natural versus anthropogenic nutrient sources in the development of an individual HAB species. Given the diverse nature of the planktonic assemblage in which HABs occur, and the lack of appropriate measurement techniques, this is exceedingly difficult to accomplish.
In this project, research teams at the Woods Hole Oceanographic Institution and University of Texas at Austin will take a novel approach to this challenge: They use use the nitrogen isotopic signature (del15N) of a species-specific HAB toxin to identify the nitrogen source and chemical form that promotes cell growth and toxin production. The bloom-forming dinoflagellate Alexandrium fundyense and its class of bioactive compounds, saxitoxins (STXs), are an ideal model system as STXs are nitrogen-rich and are typically only produced by a single species in mixed plankton assemblages. The guiding overall hypothesis is that the isotopic signature of a HAB-specific toxin can be used to discriminate between anthropogenic and natural sources of N and provide more details than bulk material del15N on the source, chemical form, and processing of N that lead to blooms of a particular toxic species. This hypothesis is based on the principle that human and animal waste in groundwater and sewage become 15N-enriched and inorganic fertilizers 15N-depleted, relative to natural sources of N in catchment waters. While the use of the isotopic ratio del15N of bulk biomass to identify nitrogen sources to coastal waters is a widely accepted practice, this use of a toxin as a species-specific tracer or marker is new and will provide details on the explicit source, chemical form, and processing of nitrogen that results in blooms of a particular HAB species.
Broader Impacts: This project addresses fundamental issues underlying the most widespread of all HAB poisoning syndromes, paralytic shellfish poisoning (PSP), a major form of shellfish poisoning that affects countries throughout the world. Project results can also assist in policy decisions about pollution control and other bloom mitigation strategies, and can be applied to a range of HAB species - those that produce saxitoxins, as well as those that produce other toxins that are nitrogen rich. Project results will be broadly disseminated through scientific papers, presentations at workshops, domestic and international conferences, and departmental seminars, and discussions with the media.";
    String projects_0_end_date "2016-10";
    String projects_0_geolocation "Gulf of Maine, Nauset Marsh Estuary System (Cape Cod Seashore), Northport Huntington Bay Complex (Long Island Sound)";
    String projects_0_name "Collaborative Research: Identification of nitrogen sources for toxic Alexandrium blooms using a novel species-specific tracer, d15N-saxitoxin";
    String projects_0_project_nid "700443";
    String projects_0_project_website "http://www.vims.edu/research/departments/eaah/programs/aquatic_toxinology/research/isotope_project.php";
    String projects_0_start_date "2014-08";
    String publisher_name "Hannah Ake";
    String publisher_role "BCO-DMO Data Manager(s)";
    String sourceUrl "(local files)";
    String standard_name_vocabulary "CF Standard Name Table v29";
    String summary "Chemical data associated with field collections from the Gulf of Maine, Nauset Marsh Estuary System, and Long Island Sound (Alexandrium isotopes project)";
    String title "Chemical data associated with field collections from the Gulf of Maine, Nauset Marsh Estuary System, and Long Island Sound (Alexandrium isotopes project)";
    String version "1";
    String xml_source "osprey2erddap.update_xml() v1.5-beta";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 1.82
Disclaimers | Privacy Policy | Contact