BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Prochlorococcus in situ cell cycle phases fractions from RV Cape Hatteras
cruises CH0409 and CH0510 in the Western Sargasso Sea in 2009 and 2010.
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_716955)
Range: longitude = -72.756 to -71.998°E, latitude = 30.158 to 30.874°N, depth = 40.0 to 125.0m, time = 2009-05-26T17:58:00Z to 2010-05-31T13:29:00Z
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
Time range:    |<   -       
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Cruise {
    String bcodmo_name "cruise_id";
    String description "R/V Cape Hatteras Cruise Designation";
    String long_name "Cruise";
    String units "unitless";
  }
  Wx {
    String bcodmo_name "exp_id";
    String description "Experiment Designation";
    String long_name "WX";
    String units "unitless";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 40.0, 125.0;
    String axis "Z";
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Sample Depth";
    String ioos_category "Location";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  date_UTC {
    String bcodmo_name "date";
    String description "Sampling date; yyyy/mm/dd";
    String long_name "Date UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String time_precision "1970-01-01";
    String units "unitless";
  }
  time_UTC {
    String bcodmo_name "time";
    String description "Sampling time; hh:mm";
    String long_name "Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -72.756, -71.998;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Longitude; N is positive";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 30.158, 30.874;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Latitude; E is positive";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  G1_pc {
    Float32 _FillValue NaN;
    Float32 actual_range 29.1, 98.8;
    String bcodmo_name "cell_concentration";
    String description "Fraction of Prochlorococcus in G1 phase";
    String long_name "G1 PC";
    String units "percent";
  }
  S_pc {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 54.6;
    String bcodmo_name "cell_concentration";
    String description "Fraction of Prochlorococcus in S phase";
    String long_name "S pc";
    String units "percent";
  }
  G2_pc {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 34.6;
    String bcodmo_name "cell_concentration";
    String description "Fraction of Prochlorococcus in G2 phase";
    String long_name "G2 PC";
    String units "percent";
  }
  G1G2_CV {
    Float32 _FillValue NaN;
    Float32 actual_range 6.4, 21.6;
    String bcodmo_name "unknown";
    String description "Coefficient of Variation for Cell Cycle subpopulations";
    String long_name "G1 G2 CV";
    String units "percent";
  }
  G2G1Ratio {
    Float32 _FillValue NaN;
    Float32 actual_range 1.85, 2.01;
    String bcodmo_name "fluorescence";
    String description "G2:G1 peak fluorescence ratio";
    String long_name "G2 G1 Ratio";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CPHLPM01/";
    String units "unitless";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.24336068e+9, 1.27531254e+9;
    String axis "T";
    String bcodmo_name "ISO_DateTime_UTC";
    String description "DateTime UTC; ISO formatted";
    String ioos_category "Time";
    String long_name "ISO Date Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String source_name "ISO_DateTime_UTC";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01T00:00:00Z";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"Samples were taken using a rosette of Niskin bottles, fixed with freshly
titrated paraformaldehyde (pH 7.4\\u20138.1, 0.1% final concentration), held in
the dark for 10 min, frozen in liquid nitrogen, and stored in a -80 deg C
freezer (CH0409 samples) or in liquid nitrogen (CH0510 samples) until
analysis. Preserved samples were analyzed by dual beam flow cytometry on a
modified Coulter-EPICS 753 flow cytometer (Binder et al. 1996). Samples were
chosen in random order, defrosted in a 30\\u00b0C water bath (just long enough
to melt, ~5 min), and stained with the DNA-specific stain Hoechst 33342 (0.5
ug mL-1 final concentration) (Invitrogen, Carlsbad, California) for a minimum
of 20 min in the dark. Prior to analysis, polystyrene fluorescent beads (Flow
Check\\u00ae 1.0 um (YG) and 0.494 um (BB); Polysicences Inc., Washington, PA,
USA), were added to each sample, and used to normalize cellular light scatter,
red (chlorophyll-derived) fluorescence, and Hoechst fluorescence.
 
Samples were run at an infusion rate of 10 uL min-1 for 10 to 50 min,
depending on cell abundance within the sample. A minimum of 10,000
Prochlorococcus cells were analyzed, except for samples in which low
Prochlorococcus concentrations made this impractical.\\u00a0\\u00a0
 
DNA frequency distributions for Prochlorococcus cells were obtained from
Hoechst-derived blue fluorescence. These frequency distributions were
deconvoluted into their component cell cycle stages (G1, S, G2) using Modfit
software (Verity Software House, Topsham, ME, USA), and assuming a simple
model comprised of two Gaussian populations (G1 and G2) and a broadened
rectangle (S).\\u00a0";
    String awards_0_award_nid "709338";
    String awards_0_award_number "OCE-0751672";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0751672";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "David L. Garrison";
    String awards_0_program_manager_nid "50534";
    String cdm_data_type "Other";
    String comment 
"Prochloroccus in situ Cell Cycle Phases Fractions 
  B. Binder, PI 
  Version 12 October 2017";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2017-10-13T20:34:10Z";
    String date_modified "2019-03-19T16:11:12Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.716955.1";
    Float64 Easternmost_Easting -71.998;
    Float64 geospatial_lat_max 30.874;
    Float64 geospatial_lat_min 30.158;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -71.998;
    Float64 geospatial_lon_min -72.756;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 125.0;
    Float64 geospatial_vertical_min 40.0;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2022-08-12T23:26:33Z (local files)
2022-08-12T23:26:33Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_716955.das";
    String infoUrl "https://www.bco-dmo.org/dataset/716955";
    String institution "BCO-DMO";
    String instruments_0_acronym "Niskin bottle";
    String instruments_0_dataset_instrument_description "Used to take samples in rosette";
    String instruments_0_dataset_instrument_nid "716962";
    String instruments_0_description "A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends.  The bottles can be attached individually on a hydrowire or deployed in 12, 24 or 36 bottle Rosette systems mounted on a frame and combined with a CTD.  Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0412/";
    String instruments_0_instrument_name "Niskin bottle";
    String instruments_0_instrument_nid "413";
    String instruments_0_supplied_name "Niskin bottle";
    String instruments_1_acronym "Flow Cytometer";
    String instruments_1_dataset_instrument_description "Used to analyze preserved samples";
    String instruments_1_dataset_instrument_nid "716963";
    String instruments_1_description 
"Flow cytometers (FC or FCM) are automated instruments that quantitate properties of single cells, one cell at a time. They can measure cell size, cell granularity, the amounts of cell components such as total DNA, newly synthesized DNA, gene expression as the amount messenger RNA for a particular gene, amounts of specific surface receptors, amounts of intracellular proteins, or transient signalling events in living cells.
(from: http://www.bio.umass.edu/micro/immunology/facs542/facswhat.htm)";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB37/";
    String instruments_1_instrument_name "Flow Cytometer";
    String instruments_1_instrument_nid "660";
    String instruments_1_supplied_name "Coulter-EPICS 753 flow cytometer";
    String keywords "bco, bco-dmo, biological, chemical, cruise, data, dataset, date, date_UTC, depth, dmo, erddap, G1_pc, G1G2_CV, G2_pc, G2G1Ratio, iso, latitude, longitude, management, oceanography, office, preliminary, ratio, S_pc, time, time_UTC";
    String license "https://www.bco-dmo.org/dataset/716955/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/716955";
    Float64 Northernmost_Northing 30.874;
    String param_mapping "{'716955': {'Lat': 'master - latitude', 'Depth': 'flag - depth', 'Lon': 'master - longitude', 'ISO_DateTime_UTC': 'flag - time'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/716955/parameters";
    String people_0_affiliation "University of Georgia";
    String people_0_affiliation_acronym "UGA";
    String people_0_person_name "Dr Brian Binder";
    String people_0_person_nid "50893";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Woods Hole Oceanographic Institution";
    String people_1_affiliation_acronym "WHOI BCO-DMO";
    String people_1_person_name "Hannah Ake";
    String people_1_person_nid "650173";
    String people_1_role "BCO-DMO Data Manager";
    String people_1_role_type "related";
    String project "Picophytoplankton_Regulation";
    String projects_0_acronym "Picophytoplankton_Regulation";
    String projects_0_description 
"The intellectual merit of the research is to extend our understanding of the biology and ecology of marine picophytoplankton, a group of microbes that are responsible for a large proportion of the total photosynthetic carbon fixation that occurs in the world's oceans. The importance of picophytoplankton as the dominant primary producers in open-ocean ecosystems is well-established. However, the factors that regulate the distribution and abundance of these populations remain poorly understood. The investigators will explore the dynamics of top-down (grazer-mediated) regulation of picophytoplankton populations in a specific context: the maintenance of summertime subsurface maxima in the pico-cyanobacterium Prochlorococcus (but not Synechococcus) in the Sargasso Sea. This phenomenon represents a relatively simple and predictable model system within which to test hypotheses about the regulation of oceanic picophytoplankton in general.
Recent results suggest that despite their abundance, Prochlorococcus in the subsurface maxi-mum are growing (and being grazed) rather slowly, as compared to the smaller population at the surface. In order to understand the factors responsible for this apparent paradox, this project will use a combination of field and laboratory studies to characterize and compare the interactions between Prochorococcus and its protozoan grazers at these two contrasting depths, and in relation to Synechococcus, which forms no such sub-surface maximum.
The broader impacts include training for graduate and undergraduate students. In addition, given the significance of picophytoplankton as primary producers at the base of oceanic microbial food webs, the results of this project should inform efforts to describe and model the broader oceanic ecosystem, and ultimately to understand its role in the global carbon cycle.";
    String projects_0_end_date "2013-02";
    String projects_0_geolocation "Western Sargasso Sea (vicinity of 30 N 72 W)";
    String projects_0_name "Top-Down Regulation of Picophytoplankton in the Sargasso Sea: Application of a Reciprocal Transplant / Dilution Approach";
    String projects_0_project_nid "709339";
    String projects_0_start_date "2008-03";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 30.158;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "Prochlorococcus in situ cell cycle phases fractions from RV Cape Hatteras cruises CH0409 and CH0510 in the Western Sargasso Sea in 2009 and 2010.";
    String time_coverage_end "2010-05-31T13:29:00Z";
    String time_coverage_start "2009-05-26T17:58:00Z";
    String title "Prochlorococcus in situ cell cycle phases fractions from RV Cape Hatteras cruises CH0409 and CH0510 in the Western Sargasso Sea in 2009 and 2010.";
    String version "1";
    Float64 Westernmost_Easting -72.756;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact