BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  Total live mangrove coverage and annual NDVI classifications for the mangrove
die-off region based on Landsat 5 and 7 transformed imagery.
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_720270)
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Files | Make a graph
 
Variable ?   Optional
Constraint #1 ?
Optional
Constraint #2 ?
   Minimum ?
 
   Maximum ?
 
 Year (unitless) ?          1989    2013
 MaxNDVI (unitless) ?          0.096008405    0.690050006
 MeanNDVI (unitless) ?          -0.125999113    0.229209068
 LiveArea (unitless) ?          0.0    0.888512537
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")

File type: (more info)

(Documentation / Bypass this form ? )
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Year {
    Int16 _FillValue 32767;
    Int16 actual_range 1989, 2013;
    String bcodmo_name "year";
    String description "Year of sampling";
    String long_name "Year";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/YEARXXXX/";
    String units "unitless";
  }
  MaxNDVI {
    Float64 _FillValue NaN;
    Float64 actual_range 0.096008405, 0.690050006;
    String bcodmo_name "density";
    String description "Annual maximum Normalized Difference Vegetation Index (NDVI) for the mangrove die-off region based on Landsat 5 and 7 transformed imagery. The years 1990 and 2003 have been removed for excessive cloud cover.";
    String long_name "Max NDVI";
    String units "unitless";
  }
  MeanNDVI {
    Float64 _FillValue NaN;
    Float64 actual_range -0.125999113, 0.229209068;
    String bcodmo_name "density";
    String description "Annual mean Normalized Difference Vegetation Index (NDVI) for the mangrove die-off region based on Landsat 5 and 7 transformed imagery. The years 1990 and 2003 have been removed for excessive cloud cover.";
    String long_name "Mean NDVI";
    String units "unitless";
  }
  LiveArea {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 0.888512537;
    String bcodmo_name "density";
    String description "Total live mangrove coverage based on Normalized Difference Vegetation Index (NDVI) classifications from Landsat 5 and 7 transformed imagery. The years 1990 and 2003 have been removed for excessive cloud cover.";
    String long_name "Live Area";
    String units "unitless";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv";
    String acquisition_description 
"Landsat 5 and 7 annual NDVI composites from 1989 to 2013 were acquired from
the [Google Earth Engine
website](\\\\\"https://earthengine.google.com\\\\\").\\u00a0Handheld GPS units
(Garmin etrex 20) were used to outline and ground truth the mangrove die-off
area in June 2014. Historical hurricane tracks were acquired from the National
Oceanic and Atmospheric Administration (NOAA) [Digital Coasts
website](\\\\\"https://coast.noaa.gov/hurricanes\\\\\").
 
[Die-off GPS outline.CSV](\\\\\"http://dmoserv3.bco-
dmo.org/data_docs/Mangrove_dieoff/GPS_outline.csv\\\\\"): This file consists of
GPS coordinates collected by a handheld GPS of the die-off area. This was used
to create a shapefile of the die-off area in GIS.";
    String awards_0_award_nid "653796";
    String awards_0_award_number "OCE-1541637";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1541637";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "David L. Garrison";
    String awards_0_program_manager_nid "50534";
    String cdm_data_type "Other";
    String comment 
"Live area and NDVI measurements 
  C. Layman, R. Rossi, and S. K. Archer, PIs 
  Version 29 November 2017";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2017-12-01T22:08:39Z";
    String date_modified "2017-12-07T20:52:47Z";
    String defaultDataQuery "&time<now";
    String doi "10.1575/1912/bco-dmo.720664";
    String history 
"2022-08-08T21:44:28Z (local files)
2022-08-08T21:44:28Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_720270.html";
    String infoUrl "https://www.bco-dmo.org/dataset/720270";
    String institution "BCO-DMO";
    String instruments_0_dataset_instrument_description "Handheld GPS unit used to outline and ground truth the mangrove die-off area";
    String instruments_0_dataset_instrument_nid "720625";
    String instruments_0_description "Acquires satellite signals and tracks your location.";
    String instruments_0_instrument_name "GPS receiver";
    String instruments_0_instrument_nid "706037";
    String instruments_0_supplied_name "Garmin etrex 20";
    String keywords "area, bco, bco-dmo, biological, chemical, data, dataset, difference, dmo, erddap, index, live, LiveArea, management, max, MaxNDVI, mean, MeanNDVI, ndvi, normalized, oceanography, office, preliminary, vegetation, year";
    String license "https://www.bco-dmo.org/dataset/720270/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/720270";
    String param_mapping "{'720270': {}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/720270/parameters";
    String people_0_affiliation "North Carolina State University";
    String people_0_affiliation_acronym "NCSU";
    String people_0_person_name "Craig Layman";
    String people_0_person_nid "51691";
    String people_0_role "Lead Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Fisheries and Oceans Canada, Pacific Region";
    String people_1_person_name "Dr Stephanie K Archer";
    String people_1_person_nid "720296";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "North Carolina State University";
    String people_2_affiliation_acronym "NCSU";
    String people_2_person_name "Ryann Rossi";
    String people_2_person_nid "664999";
    String people_2_role "Co-Principal Investigator";
    String people_2_role_type "originator";
    String people_3_affiliation "North Carolina State University";
    String people_3_affiliation_acronym "NCSU";
    String people_3_person_name "Ryann Rossi";
    String people_3_person_nid "664999";
    String people_3_role "Contact";
    String people_3_role_type "related";
    String people_4_affiliation "Woods Hole Oceanographic Institution";
    String people_4_affiliation_acronym "WHOI BCO-DMO";
    String people_4_person_name "Hannah Ake";
    String people_4_person_nid "650173";
    String people_4_role "BCO-DMO Data Manager";
    String people_4_role_type "related";
    String project "Mangrove Die-off";
    String projects_0_acronym "Mangrove Die-off";
    String projects_0_description 
"Foundation species are those that form the basis for entire ecosystems, substantially altering the physical and biological characteristics of the areas in which they are found. Mangroves are one of the most conspicuous groups of foundation species, providing numerous ecosystems services which we highly value, e.g., habitat for ecologically and economically important species, shoreline stablilization and carbon storage. As such, global declines in mangroves is of upmost concern. For example, an extensive die-off of dwarf red mangrove has been identified in a remote area on the west side of Abaco Island, The Bahamas. Because of its remote nature of the site, the die-off is unlikely to be directly due to human activities. Despite its largely inaccessible nature, the area is ecologically and economically important, e.g., it is the primary bonefishing area on Abaco - an industry worth more than $150 million annually in The Bahamas. Therefore, it is of pressing concern for stakeholders in The Bahamas to identify the underlying cause(s) of decline and assess potential threat to mangroves in other areas. To do so, a series of activities will be carried out, included widespread surveys for a recently identified fungal pathogen, laboratory efforts to isolate and identify this pathogen, satellite imagery mapping activities, and simulated grazing experiments. The area in which the die-off is occurring is currently being considered for designation as a national park by the Bahamian National Trust (BNT). The results of the study will be directly communicated to the BNT and will be used to make immediate management decisions. In collaboration with two Bahamian environmental NGOs, Friends of the Environment and Bahamas Reef Environmental Education Foundation (BREEF), a citizen science-based survey for fungal lesions, as well as an educational module on mangrove ecology, will be designed. The data from the citizen-science and student surveys will be integrated in a map of the incidence of the lesions across The Bahamas. The citizen-science component, and interaction with bonefish guides, provides the opportunity to further integrate science and education. The educational module will be introduced at the BREEF summer teaching training workshop in July. This annual event typically includes 30 teachers from 10 islands. The investigators will continue to make all of our research findings immediately available and accessible to the public through the Abaco Scientist website (http://appliedecology.cals.ncsu.edu/absci/).
Provisioning of ecosystem services in the coastal realm is largely mediated by foundation species, such as mangroves, coral and salt marsh grasses. Many of these species are undergoing substantial declines throughout the world. These declines are often driven by complex, interacting, stressors that may be difficult to identify and elucidate. Despite the difficulty, unraveling such mechanistic drivers is essential for stemming declines and developing management strategies for these ecosystems. Mangroves provide many highly valued ecosystem services to coastal communities, yet worldwide these forests are rapidly declining. Much of this loss is related to various human activities along coastlines, but natural ecological mechanisms contribute to declines in many areas as well. An extensive die-off of dwarf red mangrove (Rhizophora mangle) was observed in a remote area on the west side of Abaco Island, The Bahamas. Preliminary observations suggest the die-off may be due to a combination of fungal pathogens, grazing, and physical stress. This combination of stressors is strikingly parallel to the drivers of salt marsh decline on the East and Gulf coasts of the U.S. To date, different fungal strains from mangrove leaves have been identified. One fungus is a species of Pestalotiopsis, an Ascomycete fungus, and members of this genus are known plant pathogens. There are also high densities of a nocturnally active herbivorous cricket (Tafilasca eleuthera) in die-off areas. It is unclear whether this species has recently colonized the area, is increasing in density, or both. In addition, high salinities in the sediment porewater in the die-off area suggest another potential stressor for the plants. A series of observations and experimental studies will be used to examine potential mechanistic drivers of the mangrove die-off. First, the extent of the die-off areas will be mapped using aerial surveys conducted with a GPS-integrated drone equipped with a video camera. Progression of the die-off will be examined with historical spectral profiles of mangroves from 1980s-present (on an annual basis) using Landsat satellite data. Second, the incidence of lesions on mangroves across Abaco Island and throughout The Bahamas will be explored using a series of citizen science initiatives. Third, identification of fungi will require DNA sequencing and examination of the morphology of fungal spores/conidia at North Carolina State University. Fourth, maintenance of a grazer exclusion experiment near the die-off location will provide an assessment of the role of herbivory in this system. Finally, simulated grazing scar experiments will be used to assess if grazing can indeed facilitate fungal infections.";
    String projects_0_end_date "2016-04";
    String projects_0_geolocation "Abaco Island, The Bahamas";
    String projects_0_name "An interdisciplinary approach to elucidating the causes of widespread mangrove die-off";
    String projects_0_project_nid "653797";
    String projects_0_start_date "2015-05";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary 
"These data were compiled to better determine when the mangrove die-off began.
NDVI values of 0.2 or greater correspond to live mangrove cover. These data
suggest the mangrove die-off may have started in 2008 and was exacerbated in
following years with some recovery in 2013. Live area was calculated by
determining the area of the die-off region with NDVI values greater than 0.2.";
    String title "Total live mangrove coverage and annual NDVI classifications for the mangrove die-off region based on Landsat 5 and 7 transformed imagery.";
    String version "1";
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact