BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Carbonate chemistry over a time course with Ulva in pH drift
experiments (Seaweed OA Resilience project)
  RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_732464)
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1 +1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? (" ")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Y Axis Minimum:   Maximum:   Ascending: 
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    [The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Label {
    String description "Trial number-pot number.frozen tissue replicate";
    String ioos_category "Unknown";
    String long_name "Label";
    String units "unitless";
  }
  pCO2_avg {
    Int16 _FillValue 32767;
    Int16 actual_range 248, 1200;
    String description "Average pCO2 partial pressure in seawater tanks";
    String ioos_category "CO2";
    String long_name "P CO2 Avg";
    String units "microatmospheres (�atm)";
  }
  pCO2_sd {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 1827.8;
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Variability of pCO2 partial pressure - standard deviation";
    String ioos_category "Statistics";
    String long_name "P CO2 Sd";
    String units "microatmospheres (�atm)";
  }
  Sal_in {
    Float32 _FillValue NaN;
    Float32 actual_range 33.26, 34.11;
    String description "Salinity in situ";
    String ioos_category "Unknown";
    String long_name "Sal In";
    String units "parts per thousand (ppt)";
  }
  Temp_in {
    Float32 _FillValue NaN;
    Float32 actual_range 15.0, 15.5;
    String description "Temperature in situ";
    String ioos_category "Unknown";
    String long_name "Temp In";
    String units "degrees Celsius";
  }
  ALK {
    Float64 _FillValue NaN;
    Float64 actual_range 2022.379885, 2700.834795;
    String description "Total Alkalinity measured";
    String ioos_category "Unknown";
    String long_name "ALK";
    String units "micromoles/kilogram";
  }
  pH_t0 {
    Float64 _FillValue NaN;
    Float64 actual_range 7.62199782, 8.72;
    String description "initial pH of vial";
    String ioos_category "Salinity";
    String long_name "P H T0";
    String units "unitless";
  }
  pH_t24 {
    Float32 _FillValue NaN;
    Float32 actual_range 7.0, 10.32;
    String description "pH of vial after 24 hours";
    String ioos_category "Salinity";
    String long_name "P H T24";
    String units "unitless";
  }
  DIC_t0 {
    Float64 _FillValue NaN;
    Float64 actual_range 1879.275588, 2348.12265;
    String description "initial dissolved inorganic carbon in vial";
    String ioos_category "Unknown";
    String long_name "DIC T0";
    String units "micromoles/kilogram (�mol/kg)";
  }
  DIC_t24 {
    Float64 _FillValue NaN;
    Float64 actual_range 627.8257956, 2713.309643;
    String description "Dissolved inorganic carbon after 24 hours";
    String ioos_category "Unknown";
    String long_name "DIC T24";
    String units "micromoles/kilogram (�mol/kg)";
  }
  CO2_t0 {
    Float64 _FillValue NaN;
    Float64 actual_range 2.337058831, 38.99218085;
    String description "Initial value of CO2 in vial";
    String ioos_category "CO2";
    String long_name "CO2 T0";
    String units "micromoles/kilogram (�mol/kg)";
  }
  CO2_t24 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.002079316, 184.5790984;
    String description "CO2 in vial after 24 hours";
    String ioos_category "CO2";
    String long_name "CO2 T24";
    String units "micromoles/kilogram (�mol/kg)";
  }
  HCO3_t0 {
    Float64 _FillValue NaN;
    Float64 actual_range 1404.682423, 2126.545747;
    String description "Initial bicarbonate in vial";
    String ioos_category "CO2";
    String long_name "HCO3 T0";
    String units "micromoles/kilogram (�mol/kg)";
  }
  HCO3_t24 {
    Float64 _FillValue NaN;
    Float64 actual_range 46.64740548, 2579.09681;
    String description "Bicarbonate in vial after 24 hours";
    String ioos_category "CO2";
    String long_name "HCO3 T24";
    String units "micromoles/kilogram (�mol/kg)";
  }
  CO3_t0 {
    Float64 _FillValue NaN;
    Float64 actual_range 57.6173099, 536.8659742;
    String description "Initial carbonate in vial";
    String ioos_category "CO2";
    String long_name "CO3 T0";
    String units "micromoles/kilogram (�mol/kg)";
  }
  CO3_t24 {
    Float64 _FillValue NaN;
    Float64 actual_range 14.97124859, 956.4429539;
    String description "Carbonate in vial after 24 hours";
    String ioos_category "CO2";
    String long_name "CO3 T24";
    String units "micromoles/kilogram (�mol/kg)";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv";
    String acquisition_description 
"Samples were collected at 0 (initial) and 24 hours and parameters of carbonate
chemistry were measured (DIC,CO2, HCO3,CO3-described below). pH drift assay
experiments consisted of 2 independent variables; inhibitor treatment and
algal presence, with 4 and 2 levels, respectively for each independent
variable. The inhibitor treatments included: seawater only (control),
Acetazolamide (A), 4,4\\u2019-Diisothiocyano-2,2\\u2019-stilbenedisulfonic acid
(DIDS), and Ethoxyzolamide (E). Algae were either present or absent (control)
in a vial. Two replicate water samples were collected from each of 10
experimental culture pots of algae grown for 3 weeks at different combinations
of average and standard deviations of pCO2 level during each of 3 experimental
trials and assayed after 24 hours with or without the presence of Ulva and
combinations of inhibitor treatments. In addition, 3 different levels of pCO2
in seawater generated independently of the seawater in algal culture that
represented the range of pCO2 levels assayed across the entire experiment were
assayed over the same 24 hour period.
 
Carbonate chemistry parameters were measured by sampling pH and total
alkalinity (TA) of water samples. pH was determined using the m-cresol
indicator dye method in a spectrophotometer (Dickson et al. 2007). TA samples
were analyzed by potentiometric titration coupled to a pH electrode calibrated
using certified reference material (CRM) from the Dickson laboratory at
Scripps Oceanographic Institute and the pH electrode calibrated using TRIS
buffer (Dickson et al. 2007). TA and carbonate parameters were calculated from
potentiometric titration data and spectrophotometric pH data.";
    String awards_0_award_nid "55177";
    String awards_0_award_number "OCE-1316198";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward?AWD_ID=1316198";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Dr David  L. Garrison";
    String awards_0_program_manager_nid "50534";
    String cdm_data_type "Other";
    String comment 
"pH_Drift - Ulva 
   Carbonate Chemistry over a time course with Ulva in pH drift experiments 
   PI's: J. Kubler, S. Dudgeon (CSU-Northbridge) 
   version: 2018-03-22";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.2d  13 Jun 2019";
    String date_created "2018-03-28T12:53:51Z";
    String date_modified "2019-06-03T17:36:03Z";
    String defaultDataQuery "&time";
    String doi "10.1575/1912/bco-dmo.732464.1";
    String history 
"2019-11-19T05:46:34Z (local files)
2019-11-19T05:46:34Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_732464.das";
    String infoUrl "https://www.bco-dmo.org/dataset/732464";
    String institution "BCO-DMO";
    String instruments_0_acronym "UV Spectrophotometer-Shimadzu";
    String instruments_0_dataset_instrument_description "Used to measure pH in total scale at 25C.";
    String instruments_0_dataset_instrument_nid "732470";
    String instruments_0_description "The Shimadzu UV Spectrophotometer is manufactured by Shimadzu Scientific Instruments (ssi.shimadzu.com). Shimadzu manufacturers several models of spectrophotometer; refer to dataset for make/model information.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB20/";
    String instruments_0_instrument_name "UV Spectrophotometer-Shimadzu";
    String instruments_0_instrument_nid "595";
    String instruments_0_supplied_name "Shimadzu UV-2450 UV-visible spectrophotometer";
    String instruments_1_acronym "Multi Parameter Bench Meter";
    String instruments_1_dataset_instrument_description "Used to measure�salinity and temperature";
    String instruments_1_dataset_instrument_nid "732474";
    String instruments_1_description "An analytical instrument that can measure multiple parameters, such as pH, EC, TDS, DO and Temperature with one device.";
    String instruments_1_instrument_name "Multi Parameter Bench Meter";
    String instruments_1_instrument_nid "680";
    String instruments_1_supplied_name "Thermo Fisher Orion Star 329 pH, temperature and dissolved oxygen meter";
    String instruments_2_acronym "Automatic titrator";
    String instruments_2_dataset_instrument_description "Used to measure total alkalinity.";
    String instruments_2_dataset_instrument_nid "732475";
    String instruments_2_description "Instruments that incrementally add quantified aliquots of a reagent to a sample until the end-point of a chemical reaction is reached.";
    String instruments_2_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB12/";
    String instruments_2_instrument_name "Automatic titrator";
    String instruments_2_instrument_nid "682";
    String instruments_2_supplied_name "Mettler Toledo T50 equipped with Rondolino";
    String instruments_3_acronym "MFC";
    String instruments_3_dataset_instrument_description "Settings: Nitrogen, 1 L/min; Oxygen, 250 ml/min; CO2, 2 ml/min.";
    String instruments_3_dataset_instrument_nid "732473";
    String instruments_3_description "Mass Flow Controller (MFC) - A device used to measure and control the flow of fluids and gases";
    String instruments_3_instrument_name "Mass Flow Controller";
    String instruments_3_instrument_nid "712";
    String instruments_3_supplied_name "Qubit Systems Mass Flow Controllers (MFC)";
    String instruments_4_acronym "Aquarium chiller";
    String instruments_4_dataset_instrument_nid "732472";
    String instruments_4_description "Immersible or in-line liquid cooling device, usually with temperature control.";
    String instruments_4_instrument_name "Aquarium chiller";
    String instruments_4_instrument_nid "522982";
    String instruments_4_supplied_name "Temperature control chiller: Aqua Logic Cyclone Chiller";
    String keywords "alk, altimetry, average, bco, bco-dmo, biological, carbon, carbon dioxide, carbonate, chemical, co2, CO2_t0, CO2_t24, co3, CO3_t0, CO3_t24, data, dataset, dic, DIC_t0, DIC_t24, dioxide, dmo, erddap, hco3, HCO3_t0, HCO3_t24, label, laboratory, management, oceanography, office, pCO2_avg, pCO2_sd, pH_t0, pH_t24, preliminary, sal, Sal_in, salinity, satellite, statistics, t24, Temp_in, temperature";
    String license 
"The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.";
    String metadata_source "https://www.bco-dmo.org/api/dataset/732464";
    String param_mapping "{'732464': {}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/732464/parameters";
    String people_0_affiliation "California State University Northridge";
    String people_0_affiliation_acronym "CSU-Northridge";
    String people_0_person_name "Dr Janet  E Kubler";
    String people_0_person_nid "51681";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "California State University Northridge";
    String people_1_affiliation_acronym "CSU-Northridge";
    String people_1_person_name "Dr Steve Dudgeon";
    String people_1_person_nid "51682";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Woods Hole Oceanographic Institution";
    String people_2_affiliation_acronym "WHOI BCO-DMO";
    String people_2_person_name "Nancy Copley";
    String people_2_person_nid "50396";
    String people_2_role "BCO-DMO Data Manager";
    String people_2_role_type "related";
    String project "Ocean Acidification: Scope for Resilience to Ocean Acidification in Macroalgae";
    String projects_0_acronym "Seaweed OA Resilience";
    String projects_0_description "Benthic macroalgae contribute to intensely productive near shore  ecosystems and little is known about the potential effects of ocean  acidification on non-calcifying macroalgae. K�bler and Dudgeon will test  hypotheses about two macroalgae, Ulva spp. and Plocamium cartilagineum,  which, for different reasons, are hypothesized to be more productive  and undergo ecological expansions under predicted changes in ocean  chemistry. They have designed laboratory culture-based experiments to  quantify the scope for response to ocean acidification in Plocamium,  which relies solely on diffusive uptake of CO2, and populations of Ulva  spp., which have an inducible concentrating mechanism (CCM). The  investigators will culture these algae in media equilibrated at 8  different pCO2 levels ranging from 380 to 940 ppm to address three key  hypotheses. The first is that macroalgae (such as Plocamium  cartilagineum) that are not able to acquire inorganic carbon in changed  form will benefit, in terms of photosynthetic and growth rates, from  ocean acidification. There is little existing data to support this  common assumption. The second hypothesis is that enhanced growth of Ulva  sp. under OA will result from the energetic savings from down  regulating the CCM, rather than from enhanced photosynthesis per se.  Their approach will detect existing genetic variation for adaptive  plasticity. The third key hypothesis to be addressed in short-term  culture experiments is that there will be a significant interaction  between ocean acidification and nitrogen limited growth of Ulva spp.,  which are indicator species of eutrophication. K�bler and Dudgeon will  be able to quantify the individual effects of ocean acidification and  nitrogenous nutrient addition on Ulva spp. and also, the synergistic  effects, which will inevitably apply in many highly productive, shallow  coastal areas. The three hypotheses being addressed have been broadly  identified as urgent needs in our growing understanding of the impacts  of ocean acidification.";
    String projects_0_end_date "2016-05";
    String projects_0_geolocation "Temperate coastal waters of the USA (30 - 45 N latitude, -66 to -88 W and -117 to -125 W longitude)";
    String projects_0_name "Ocean Acidification: Scope for Resilience to Ocean Acidification in Macroalgae";
    String projects_0_project_nid "2275";
    String projects_0_start_date "2013-06";
    String publisher_name "Nancy Copley";
    String publisher_role "BCO-DMO Data Manager(s)";
    String sourceUrl "(local files)";
    String standard_name_vocabulary "CF Standard Name Table v29";
    String summary "Carbonate chemistry measurements over a time course with Ulva in pH drift experiments.";
    String title "Carbonate chemistry over a time course with Ulva in pH drift experiments (Seaweed OA Resilience project)";
    String version "1";
    String xml_source "osprey2erddap.update_xml() v1.5-beta";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 1.82
Disclaimers | Privacy Policy | Contact