BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  [Lab urchin grazing assay fx temp and pCO2] - Experimental study to estimate
per capita sea urchin (Strongylocentrotus polyacanthus) grazing rates on the
alga Clathromorphum nereostratum as a function of seawater temperature and pCO2
concentration (Ocean Acidification: Century Scale Impacts to Ecosystem
Structure and Function of Aleutian Kelp Forests)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_755735)
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Files | Make a graph
 
Variable ?   Optional
Constraint #1 ?
Optional
Constraint #2 ?
   Minimum ?
 
   Maximum ?
 
 treatment_temp (degrees Celsius) ?          6.5    8.5
 treatment_pCO2 (microatmospheres (uatm)) ?          330    850
 tank (unitless) ?          1    3
 tank_temp_ave (degrees Celsius) ?          6.33    8.91
 tank_pCO2_ave (microatmospheres (uatm)) ?          323.1    1110.49
 replicate (unitless) ?          1    5
 treatment_grazing (unitless) ?          "control"    "treatment"
 urchin_diameter_mm (millimeters) ?          43    64
 cca_surface_area_cm2 (square centimeters (cm^2)) ?          5.15    38.14
 time (Date T0, UTC) ?          2016-01-14    2016-01-15
  < slider >
 sampling_time_T0 (unitless) ?          "10:00"    "19:30"
 standard_ave_grams_T0 (grams) ?          4.6    4.603
 sample_mass_grams_T0 (grams) ?          1.599    22.702
 date_T5 (unitless) ?          "2016-01-19"    "2016-01-20"
 sampling_time_T5 (unitless) ?          "11:15"    "17:50"
 duration_days_T5 (days) ?          4.92    5.05
 standard_ave_grams_T5 (grams) ?          4.599    4.602
 sample_mass_grams_T5 (grams) ?          1.521    22.71
 correction_factor_T5 (unitless) ?          0.987    1.021
 ave_correction_factor_T5 (unitless) ?          0.998    1.008
 corrected_initial_mass_grams_T5 (grams) ?          1.604    8.929
 amount_mg_consumed_T5 (milligrams) ?          12.811    415.569
 amount_mg_consumed_day_T5 (milligrams) ?          2.595    83.287
 amount_mg_consumed_cm2_day_T5 (milligrams) ?          0.176    6.81
 date_10 (unitless) ?          "2016-01-25"    "2016-01-26"
 sampling_time_10 (unitless) ?          "10:00"    "9:30"
 duration_days_10 (days) ?          10.11    10.78
 standard_ave_grams_T10 (grams) ?          4.599    4.603
 sample_mass_grams_T10 (grams) ?          1.413    22.802
 correction_factor_T10 (unitless) ?          0.908    1.144
 ave_correction_factor_T10 (unitless) ?          1.0    1.02
 corrected_initial_mass_grams_T10 (grams) ?          1.613    8.931
 amount_mg_consumed_T10 (milligrams) ?          43.594    636.11
 amount_mg_consumed_day_T10 (milligrams) ?          4.055    62.42
 amount_mg_consumed_cm2_day_T10 (milligrams) ?          0.333    5.33
 date_T15 (unitless) ?          "2016-01-29"    "2016-01-30"
 sampling_time_T15 (unitless) ?          "10:00"    "9:45"
 duration_days_T15 (days) ?          14.13    14.78
 standard_ave_grams_T15 (grams) ?          4.597    4.6
 sample_mass_grams_T15 (grams) ?          1.351    22.874
 correction_factor_T15 (unitless) ?          0.988    1.031
 ave_correction_factor_T15 (unitless) ?          1.0    1.017
 corrected_initial_mass_grams_T15 (grams) ?          1.615    8.935
 amount_mg_consumed_T15 (milligrams) ?          59.088    800.349
 amount_mg_consumed_day_T15 (milligrams) ?          4.012    56.44
 amount_mg_consumed_cm2_day_T15 (milligrams) ?          0.312    4.441
 date_T20 (unitless) ?          "2016-02-03"    "2016-02-04"
 sampling_time_T20 (unitless) ?          "10:15"    "9:30"
 duration_days_T20 (days) ?          19.81    20.01
 standard_ave_grams_T20 (grams) ?          4.597    4.601
 sample_mass_grams_T20 (grams) ?          1.316    22.902
 correction_factor_T20 (unitless) ?          0.995    1.034
 ave_correction_factor_T20 (unitless) ?          1.004    1.02
 corrected_initial_mass_grams_T20 (grams) ?          1.619    8.97
 amount_mg_consumed_T20 (milligrams) ?          80.38    1045.949
 amount_mg_consumed_day_T20 (milligrams) ?          4.044    52.343
 amount_mg_consumed_cm2_day_T20 (milligrams) ?          0.345    4.232
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")

File type: (more information)

(Documentation / Bypass this form ? )
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  treatment_temp {
    Float32 _FillValue NaN;
    Float32 actual_range 6.5, 8.5;
    String bcodmo_name "treatment";
    String description "target temperature";
    String long_name "Treatment Temp";
    String units "degrees Celsius";
  }
  treatment_pCO2 {
    Int16 _FillValue 32767;
    Int16 actual_range 330, 850;
    String bcodmo_name "treatment";
    String description "target pCO2 concentration";
    String long_name "Treatment P CO2";
    String units "microatmospheres (uatm)";
  }
  tank {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 1, 3;
    String bcodmo_name "replicate";
    String description "replicate tank identifier";
    String long_name "Tank";
    String units "unitless";
  }
  tank_temp_ave {
    Float32 _FillValue NaN;
    Float32 actual_range 6.33, 8.91;
    String bcodmo_name "temperature";
    String description "average tank temperature during study";
    String long_name "Tank Temp Ave";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/";
    String units "degrees Celsius";
  }
  tank_pCO2_ave {
    Float32 _FillValue NaN;
    Float32 actual_range 323.1, 1110.49;
    String bcodmo_name "pCO2";
    String description "average tank pCO2 concentration during study";
    String long_name "Tank P CO2 Ave";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PCO2C101/";
    String units "microatmospheres (uatm)";
  }
  replicate {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 1, 5;
    String bcodmo_name "replicate";
    String description "replicate individual urchin or alga";
    String long_name "Replicate";
    String units "unitless";
  }
  treatment_grazing {
    String bcodmo_name "treatment";
    String description "treatment = coralline alga exposed to herbivory; control = no herbivory";
    String long_name "Treatment Grazing";
    String units "unitless";
  }
  urchin_diameter_mm {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 43, 64;
    String bcodmo_name "diameter";
    String description "size (test diameter) of sea urchin";
    String long_name "Urchin Diameter Mm";
    String units "millimeters";
  }
  cca_surface_area_cm2 {
    Float32 _FillValue NaN;
    Float32 actual_range 5.15, 38.14;
    String bcodmo_name "surface_area";
    String description "surface area of coralline alga";
    String long_name "Cca Surface Area Cm2";
    String units "square centimeters (cm^2)";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.4527296e+9, 1.452816e+9;
    String axis "T";
    String bcodmo_name "date";
    String description "date of sampling at timepoint T0; formatted as yyyy-mm-dd";
    String ioos_category "Time";
    String long_name "Date T0";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String source_name "date_T0";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  sampling_time_T0 {
    String bcodmo_name "time";
    String description "time of sampling (24 hr clock) (HH:MM)";
    String long_name "Sampling Time T0";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  standard_ave_grams_T0 {
    Float32 _FillValue NaN;
    Float32 actual_range 4.6, 4.603;
    String bcodmo_name "mass";
    String description "average mass of experimental standard at time point x";
    String long_name "Standard Ave Grams T0";
    String units "grams";
  }
  sample_mass_grams_T0 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.599, 22.702;
    String bcodmo_name "mass";
    String description "average mass of coralline alga at time x";
    String long_name "Sample Mass Grams T0";
    String units "grams";
  }
  date_T5 {
    String bcodmo_name "date";
    String description "date of sampling; formatted as yyyy-mm-dd";
    String long_name "Date T5";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String time_precision "1970-01-01";
    String units "unitless";
  }
  sampling_time_T5 {
    String bcodmo_name "time";
    String description "time of sampling (24 hr clock) (HH:MM)";
    String long_name "Sampling Time T5";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  duration_days_T5 {
    Float32 _FillValue NaN;
    Float32 actual_range 4.92, 5.05;
    String bcodmo_name "duration";
    String description "duration of assay at timepoint T0";
    String long_name "Duration Days T5";
    String units "days";
  }
  standard_ave_grams_T5 {
    Float32 _FillValue NaN;
    Float32 actual_range 4.599, 4.602;
    String bcodmo_name "mass";
    String description "average mass of eT0perimental standard at time point T0";
    String long_name "Standard Ave Grams T5";
    String units "grams";
  }
  sample_mass_grams_T5 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.521, 22.71;
    String bcodmo_name "mass";
    String description "average mass of coralline alga at time T0";
    String long_name "Sample Mass Grams T5";
    String units "grams";
  }
  correction_factor_T5 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.987, 1.021;
    String bcodmo_name "unknown";
    String description "correction factor; computed by dividing the final mass of the control alga (at time T0) by its initial mass (at time T0)";
    String long_name "Correction Factor T5";
    String units "unitless";
  }
  ave_correction_factor_T5 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.998, 1.008;
    String bcodmo_name "unknown";
    String description "the average correction factor computed for all control coralline algae in a given tank at time T0";
    String long_name "Ave Correction Factor T5";
    String units "unitless";
  }
  corrected_initial_mass_grams_T5 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.604, 8.929;
    String bcodmo_name "mass";
    String description "sample.mass.grams.T0 * ave.correction.factor.T0";
    String long_name "Corrected Initial Mass Grams T5";
    String units "grams";
  }
  amount_mg_consumed_T5 {
    Float32 _FillValue NaN;
    Float32 actual_range 12.811, 415.569;
    String bcodmo_name "unknown";
    String description "the total amount of coralline algae consumed by a sea urchin at time T0; computed by subtracting sample.mass.grams.T0 from corrected.initial.mass.grams.T0; then * 1000";
    String long_name "Amount Mg Consumed T5";
    String units "milligrams";
  }
  amount_mg_consumed_day_T5 {
    Float32 _FillValue NaN;
    Float32 actual_range 2.595, 83.287;
    String bcodmo_name "unknown";
    String description "rate of algal consumption (per day); computed by dividing amount.mg.consumed.T0 by duration.days";
    String long_name "Amount Mg Consumed Day T5";
    String units "milligrams";
  }
  amount_mg_consumed_cm2_day_T5 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.176, 6.81;
    String bcodmo_name "unknown";
    String description "rate of algal consumption (per day); standardized by the surface area of the coralline alga (using cca.surface.area.cm^2)";
    String long_name "Amount Mg Consumed Cm2 Day T5";
    String units "milligrams";
  }
  date_10 {
    String bcodmo_name "date";
    String description "date of sampling at timepoint T5; formatted as yyyy-mm-dd";
    String long_name "Date 10";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String time_precision "1970-01-01";
    String units "unitless";
  }
  sampling_time_10 {
    String bcodmo_name "time";
    String description "time of sampling (24 hr clock) (HH:MM)";
    String long_name "Sampling Time 10";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  duration_days_10 {
    Float32 _FillValue NaN;
    Float32 actual_range 10.11, 10.78;
    String bcodmo_name "duration";
    String description "duration of assay at timepoint T10";
    String long_name "Duration Days 10";
    String units "days";
  }
  standard_ave_grams_T10 {
    Float32 _FillValue NaN;
    Float32 actual_range 4.599, 4.603;
    String bcodmo_name "mass";
    String description "average mass of eT10perimental standard at time point T10";
    String long_name "Standard Ave Grams T10";
    String units "grams";
  }
  sample_mass_grams_T10 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.413, 22.802;
    String bcodmo_name "mass";
    String description "average mass of coralline alga at time T10";
    String long_name "Sample Mass Grams T10";
    String units "grams";
  }
  correction_factor_T10 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.908, 1.144;
    String bcodmo_name "unknown";
    String description "correction factor; computed by dividing the final mass of the control alga (at time T10) by its initial mass (at time T0)";
    String long_name "Correction Factor T10";
    String units "unitless";
  }
  ave_correction_factor_T10 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.0, 1.02;
    String bcodmo_name "unknown";
    String description "the average correction factor computed for all control coralline algae in a given tank at time T10";
    String long_name "Ave Correction Factor T10";
    String units "unitless";
  }
  corrected_initial_mass_grams_T10 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.613, 8.931;
    String bcodmo_name "mass";
    String description "sample.mass.grams.T0 * ave.correction.factor.T10";
    String long_name "Corrected Initial Mass Grams T10";
    String units "grams";
  }
  amount_mg_consumed_T10 {
    Float32 _FillValue NaN;
    Float32 actual_range 43.594, 636.11;
    String bcodmo_name "unknown";
    String description "the total amount of coralline algae consumed by a sea urchin at time T10; computed by subtracting sample.mass.grams.T10 from corrected.initial.mass.grams.T10; then * 1000";
    String long_name "Amount Mg Consumed T10";
    String units "milligrams";
  }
  amount_mg_consumed_day_T10 {
    Float32 _FillValue NaN;
    Float32 actual_range 4.055, 62.42;
    String bcodmo_name "unknown";
    String description "rate of algal consumption (per day); computed by dividing amount.mg.consumed.T10 by duration.days";
    String long_name "Amount Mg Consumed Day T10";
    String units "milligrams";
  }
  amount_mg_consumed_cm2_day_T10 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.333, 5.33;
    String bcodmo_name "unknown";
    String description "rate of algal consumption (per day); standardized by the surface area of the coralline alga (using cca.surface.area.cm^2)";
    String long_name "Amount Mg Consumed Cm2 Day T10";
    String units "milligrams";
  }
  date_T15 {
    String bcodmo_name "date";
    String description "date of sampling at timepoint T15; formatted as yyyy-mm-dd";
    String long_name "Date T15";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String time_precision "1970-01-01";
    String units "unitless";
  }
  sampling_time_T15 {
    String bcodmo_name "time";
    String description "time of sampling (24 hr clock) (HH:MM)";
    String long_name "Sampling Time T15";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  duration_days_T15 {
    Float32 _FillValue NaN;
    Float32 actual_range 14.13, 14.78;
    String bcodmo_name "duration";
    String description "duration of assay at timepoint T15";
    String long_name "Duration Days T15";
    String units "days";
  }
  standard_ave_grams_T15 {
    Float32 _FillValue NaN;
    Float32 actual_range 4.597, 4.6;
    String bcodmo_name "mass";
    String description "average mass of eT15perimental standard at time point T15";
    String long_name "Standard Ave Grams T15";
    String units "grams";
  }
  sample_mass_grams_T15 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.351, 22.874;
    String bcodmo_name "mass";
    String description "average mass of coralline alga at time T15";
    String long_name "Sample Mass Grams T15";
    String units "grams";
  }
  correction_factor_T15 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.988, 1.031;
    String bcodmo_name "unknown";
    String description "correction factor; computed by dividing the final mass of the control alga (at time T15) by its initial mass (at time T0)";
    String long_name "Correction Factor T15";
    String units "unitless";
  }
  ave_correction_factor_T15 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.0, 1.017;
    String bcodmo_name "unknown";
    String description "the average correction factor computed for all control coralline algae in a given tank at time T15";
    String long_name "Ave Correction Factor T15";
    String units "unitless";
  }
  corrected_initial_mass_grams_T15 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.615, 8.935;
    String bcodmo_name "mass";
    String description "sample.mass.grams.T0 * ave.correction.factor.T15";
    String long_name "Corrected Initial Mass Grams T15";
    String units "grams";
  }
  amount_mg_consumed_T15 {
    Float32 _FillValue NaN;
    Float32 actual_range 59.088, 800.349;
    String bcodmo_name "unknown";
    String description "the total amount of coralline algae consumed by a sea urchin at time T15; computed by subtracting sample.mass.grams.T15 from corrected.initial.mass.grams.T15; then * 1000";
    String long_name "Amount Mg Consumed T15";
    String units "milligrams";
  }
  amount_mg_consumed_day_T15 {
    Float32 _FillValue NaN;
    Float32 actual_range 4.012, 56.44;
    String bcodmo_name "unknown";
    String description "rate of algal consumption (per day); computed by dividing amount.mg.consumed.T15 by duration.days";
    String long_name "Amount Mg Consumed Day T15";
    String units "milligrams";
  }
  amount_mg_consumed_cm2_day_T15 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.312, 4.441;
    String bcodmo_name "unknown";
    String description "rate of algal consumption (per day); standardized by the surface area of the coralline alga (using cca.surface.area.cm^2)";
    String long_name "Amount Mg Consumed Cm2 Day T15";
    String units "milligrams";
  }
  date_T20 {
    String bcodmo_name "date";
    String description "date of sampling at timepoint T20; formatted as yyyy-mm-dd";
    String long_name "Date T20";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String time_precision "1970-01-01";
    String units "unitless";
  }
  sampling_time_T20 {
    String bcodmo_name "time";
    String description "time of sampling (24 hr clock) (HH:MM)";
    String long_name "Sampling Time T20";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  duration_days_T20 {
    Float32 _FillValue NaN;
    Float32 actual_range 19.81, 20.01;
    String bcodmo_name "duration";
    String description "duration of assay at timepoint T20";
    String long_name "Duration Days T20";
    String units "days";
  }
  standard_ave_grams_T20 {
    Float32 _FillValue NaN;
    Float32 actual_range 4.597, 4.601;
    String bcodmo_name "mass";
    String description "average mass of eT20perimental standard at time point T20";
    String long_name "Standard Ave Grams T20";
    String units "grams";
  }
  sample_mass_grams_T20 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.316, 22.902;
    String bcodmo_name "mass";
    String description "average mass of coralline alga at time T20";
    String long_name "Sample Mass Grams T20";
    String units "grams";
  }
  correction_factor_T20 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.995, 1.034;
    String bcodmo_name "unknown";
    String description "correction factor; computed by dividing the final mass of the control alga (at time T20) by its initial mass (at time T0)";
    String long_name "Correction Factor T20";
    String units "unitless";
  }
  ave_correction_factor_T20 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.004, 1.02;
    String bcodmo_name "unknown";
    String description "the average correction factor computed for all control coralline algae in a given tank at time T20";
    String long_name "Ave Correction Factor T20";
    String units "unitless";
  }
  corrected_initial_mass_grams_T20 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.619, 8.97;
    String bcodmo_name "mass";
    String description "sample.mass.grams.T0 * ave.correction.factor.T20";
    String long_name "Corrected Initial Mass Grams T20";
    String units "grams";
  }
  amount_mg_consumed_T20 {
    Float32 _FillValue NaN;
    Float32 actual_range 80.38, 1045.949;
    String bcodmo_name "unknown";
    String description "the total amount of coralline algae consumed by a sea urchin at time T20; computed by subtracting sample.mass.grams.T20 from corrected.initial.mass.grams.T20; then * 1000";
    String long_name "Amount Mg Consumed T20";
    String units "milligrams";
  }
  amount_mg_consumed_day_T20 {
    Float32 _FillValue NaN;
    Float32 actual_range 4.044, 52.343;
    String bcodmo_name "unknown";
    String description "rate of algal consumption (per day); computed by dividing amount.mg.consumed.T20 by duration.days";
    String long_name "Amount Mg Consumed Day T20";
    String units "milligrams";
  }
  amount_mg_consumed_cm2_day_T20 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.345, 4.232;
    String bcodmo_name "unknown";
    String description "rate of algal consumption (per day); standardized by the surface area of the coralline alga (using cca.surface.area.cm^2)";
    String long_name "Amount Mg Consumed Cm2 Day T20";
    String units "milligrams";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv";
    String acquisition_description 
"To evaluate whether rates of sea urchin grazing on C. nereostratum have
changed or will change with ocean warming and acidification, we cultured C.
nereostratum and S. polyacanthus under experimental conditions mimicking past,
present, and predicted future levels of ocean temperature and pCO2 in the
region, then followed this three-month culturing period with a controlled
feeding experiment conducted under the same conditions. Small C. nereostratum
colonies (~4-5 cm diameter) and large S. polyacanthus (~45-60 mm test
diameter) were live collected from Adak in 2015 and immediately transported to
the Northeastern University Marine Science Center in Nahant, Massachusetts.
There, all specimens were acclimated to laboratory conditions at 8.5 \\u00b0C
for two weeks, after which individual C. nereostratum colonies were attached
to the underside of plastic petri dishes using cyanoacrylate glue and then
allowed to acclimate for an additional two weeks before being moved to
experimental aquaria. Conditions were then incrementally modified to achieve
target temperature and pCO2 levels (see below) over a one-week period. After
reaching target conditions, each 42-L aquarium was dosed with 213 mL of
calcein fluorescent dye (Western Chemicals Inc.), which was recirculated in
the aquaria for three days and then flushed from the system. Coralline algae
incorporate the dye into their skeleton, thus creating a distinct line that
can be viewed via fluorescent microscopy to demark the region of new growth
within each individual.
 
We employed four pCO2 conditions and three temperatures that, while
factorially crossed, spanned pre-industrial, present-day, and projected year
2100 conditions (assuming an IPCC \\\"business as usual\\\" carbon emissions
scenario; Pachauri and Meyer 2014). More extreme temperature (12.5 degrees C)
and pCO2 (2800 micro-atm) conditions were also employed in the broader
experiment but were not included in our experimental feeding assay because
they are not predicted to occur until year 2500, or later. For each treatment,
we set temperature to average summertime conditions, the time when ~75% of C.
nereostratum growth occurs (Adey et al. 2013).
 
All treatments (4 pCO2 concentrations x 3 temperatures, fully factorial) were
housed on individual shelves and consisted of three 42-liter acrylic aquaria
and one 65-liter sump (n = 3 tanks/treatment). The aquaria were connected to a
sump via a common overflow and return line but were each independently and
continuously replenished with new seawater-thereby establishing them as true
experimental replicates. The sump contained a filter box with a nylon mesh
particle filter and activated carbon, a protein skimmer (Eshopps PSK-75), and
a return pump, all of which was connected to a water chiller (Coralife 1/4HP).
Filtered natural seawater was added via Darhor manual flow controllers at a
rate of 50 mL/min/tank, resulting in full replacement of treatment water every
~21 hours-sufficiently fast to prevent material depletion of the dissolved
constituents of the seawater yet slow enough to allow the mixed gases being
sparged into the experimental treatments to approach equilibrium with the
seawater. Mixed gases were sparged into each tank with 91 cm long flexible
bubblers at the rate of ~1 L/min via Darhor needle-valve gas flow controllers.
Two 12,000K LED light arrays (Ecoxotic Panorama, Pro 24V) were mounted above
each tank and set to an irradiance that mirrored average summer daylight
irradiance at 10 m depth in the Aleutian Islands (~258 micro-E m-2 s-1; 12 hr
light:12 hr dark cycle).
 
Over the course of the four-month experiment, we measured pH (Accumet AB15 pH
meter with Accufet solid state probe), salinity (YSI3200 meter with K=10
conductivity electrode and temperature probe), and temperature (NIST traceable
red spirit glass thermometer) in each tank every Monday, Wednesday, and
Friday. The pCO2 of the gas mixtures was measured with a Qubit S151 infrared
CO2 analyzer and calibrated with certified mixed CO2 from Airgas Incorporated.
Every 10 days, we characterized the full carbonate system chemistry of the
experimental treatments from measured total alkalinity, dissolved inorganic
carbon, temperature, and salinity. For this, seawater samples were obtained in
250 mL borosilicate ground-glass-stoppered bottles and immediately poisoned
with 100 micro-L of saturated HgCl2 solution to halt biological activity
(Dickson et al. 2007). Total alkalinity was measured via closed-cell
potentiometric Gran titration and dissolved inorganic carbon was measured with
a UIC 5400 Coulometer on a VINDTA 3C (Marianda Incorporated) using Dickson
certified seawater reference material. Seawater pCO2, pH, carbonate ion
concentration ([CO32-]) bicarbonate ion concentration ([HCO3-]), aqueous CO2,
and calcite saturation state were calculated with the program CO2SYS (Lewis
and Wallace 1998), using Roy and colleague's (1993) values for the K1 and K2
carbonic acid constants, the Mucci (1983) value for the stoichiometric calcite
solubility product, the seawater pH scale, and an atmospheric pressure of
1.015 atm.
 
At the beginning of the experiment we measured the buoyant weight of each
specimen. We then scrubbed each specimen with a toothbrush and reweighed it
every month and at the end of the experiment. With each weighing, we also
photographed the specimen with a ruler and Reef Watch coral bleaching card in
the field of view. We then measured the 2-d surface area (coralline algae) or
test diameter (urchin) of the photographed specimens (Image J, NIH). Following
a three-month incubation, a subset of the coralline algae was placed
individually in cages and paired with a single urchin to quantify bioerosion
rate under the different treatments, while the remaining algae were retained
as experimental controls during the 20-day feeding experiment, and
subsequently measured for skeletal density. Following the feeding experiment,
all coralline algae were sectioned with a diamond lapidary saw (Inland Craft
SwapTop 6.5\\\" Diamond Trim Saw) and either frozen for genetic analysis or
sectioned into 6 mm slices, rinsed in a series of two 90% Ethanol baths, and
allowed to air dry for further examination of growth and skeletal density.
 
After three months of culturing C. nereostratum and large S. polyacanthus
(mean test diameter \\u00b1 SE = 53 \\u00b1 1 mm) under various temperature and
pCO2 conditions (see above), we conducted a controlled feeding assay.
Individual coralline algae were randomly paired with sea urchins from the same
tank and placed into small cages (n = 5/tank, 15/treatment) and returned to
aquaria, with the remaining coralline algae from each tank serving as
controls. Buoyant weight measurements and photographs of each alga and urchin
were obtained at the beginning of the experiment (as described above) and
again every five days. We excluded replicates where: (i) the sea urchin
appeared moribund or died during the assay; or (ii) negligible grazing
occurred throughout the experiment, indicating severe stress to the animal.
Buoyant weights were converted to dry weight (mg) using an empirically-derived
conversion factor (linear regression: -0.117448 + 1.746361 * buoyant mass;
adjusted R^2 = 0.9996; p < 0.001). To calculate the amount of C. nereostratum
(mg CaCO3 dry weight) consumed by each urchin at each sampling interval while
also accounting for the potential gain or loss of mass within the treatment
alga, we used the equation [Ti x (Cf/Ci)] - Tf, where Ti and Tf is the initial
and final mass (respectively) of an alga exposed to herbivory, and Ci and
Cf\\u00a0 is the initial and final mass (respectively) of its paired control.
For this exercise, we averaged correction factors (Cf/Ci) for all control
algae in a given tank, and applied this average correction factor to each
treatment alga in the same tank. We then computed grazing rate (amount
consumed/day) for each sea urchin, as well as per capita grazing rates
standardized by the surface area of C. nereostratum.";
    String awards_0_award_nid "526658";
    String awards_0_award_number "PLR-1316141";
    String awards_0_data_url "http://nsf.gov/awardsearch/showAward?AWD_ID=1316141";
    String awards_0_funder_name "NSF Arctic Sciences";
    String awards_0_funding_acronym "NSF ARC";
    String awards_0_funding_source_nid "390";
    String awards_0_program_manager "Henrietta N Edmonds";
    String awards_0_program_manager_nid "51517";
    String cdm_data_type "Other";
    String comment 
"Estimates of per capita sea urchin (Strongylocentrotus polyacanthus) grazing rates on the alga Clathromorphum nereostratum 
   PI's: Steneck (Umaine), J. Estes (UCSC), D. Rasher (BLOS) 
   version: 2019-02-013";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2019-02-13T21:41:10Z";
    String date_modified "2019-02-25T21:04:03Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.755735.1";
    String history 
"2024-11-20T03:34:02Z (local files)
2024-11-20T03:34:02Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_755735.html";
    String infoUrl "https://www.bco-dmo.org/dataset/755735";
    String institution "BCO-DMO";
    String instruments_0_acronym "CO2 coulometer";
    String instruments_0_dataset_instrument_description "To measure dissolved inorganic carbon";
    String instruments_0_dataset_instrument_nid "755749";
    String instruments_0_description "A CO2 coulometer semi-automatically controls the sample handling and extraction of CO2 from seawater samples. Samples are acidified and the CO2 gas is bubbled into a titration cell where CO2 is converted to hydroxyethylcarbonic acid which is then automatically titrated with a coulometrically-generated base to a colorimetric endpoint.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB12";
    String instruments_0_instrument_name "CO2 Coulometer";
    String instruments_0_instrument_nid "507";
    String instruments_0_supplied_name "UIC 5400 Coulometer on a VINDTA 3C";
    String instruments_1_acronym "Salinometer";
    String instruments_1_dataset_instrument_description "To measure salinity and temperature of tanks";
    String instruments_1_dataset_instrument_nid "755746";
    String instruments_1_description "A salinometer is a device designed to measure the salinity, or dissolved salt content, of a solution.";
    String instruments_1_instrument_name "Salinometer";
    String instruments_1_instrument_nid "677";
    String instruments_1_supplied_name "YSI3200 meter with K=10 conductivity electrode and temperature probe";
    String instruments_2_acronym "Benchtop pH Meter";
    String instruments_2_dataset_instrument_description "To measure pH of tanks";
    String instruments_2_dataset_instrument_nid "755745";
    String instruments_2_description 
"An instrument consisting of an electronic voltmeter and pH-responsive electrode that gives a direct conversion of voltage differences to differences of pH at the measurement temperature.  (McGraw-Hill Dictionary of Scientific and Technical Terms) 
This instrument does not map to the NERC instrument vocabulary term for 'pH Sensor' which measures values in the water column.  Benchtop models are typically employed for stationary lab applications.";
    String instruments_2_instrument_name "Benchtop pH Meter";
    String instruments_2_instrument_nid "681";
    String instruments_2_supplied_name "Accumet AB15 pH meter with Accufet solid state probe";
    String instruments_3_acronym "inorganic carbon and alkalinity analyser";
    String instruments_3_dataset_instrument_nid "755750";
    String instruments_3_description "The Versatile INstrument for the Determination of Total inorganic carbon and titration Alkalinity (VINDTA) 3C is a laboratory alkalinity titration system combined with an extraction unit for coulometric titration, which simultaneously determines the alkalinity and dissolved inorganic carbon content of a sample. The sample transport is performed with peristaltic pumps and acid is added to the sample using a membrane pump. No pressurizing system is required and only one gas supply (nitrogen or dry and CO2-free air) is necessary. The system uses a Metrohm Titrino 719S, an ORION-Ross pH electrode and a Metrohm reference electrode. The burette, the pipette and the analysis cell have a water jacket around them. Precision is typically +/- 1 umol/kg for TA and/or DIC in open ocean water.";
    String instruments_3_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0481/";
    String instruments_3_instrument_name "MARIANDA VINDTA 3C total inorganic carbon and titration alkalinity analyser";
    String instruments_3_instrument_nid "686";
    String instruments_4_acronym "MFC";
    String instruments_4_dataset_instrument_nid "755848";
    String instruments_4_description "Mass Flow Controller (MFC) - A device used to measure and control the flow of fluids and gases";
    String instruments_4_instrument_name "Mass Flow Controller";
    String instruments_4_instrument_nid "712";
    String instruments_4_supplied_name "Darhor manual flow controllers";
    String instruments_5_acronym "CO2 Analyzer";
    String instruments_5_dataset_instrument_description "To measure pCO2 in tanks";
    String instruments_5_dataset_instrument_nid "755748";
    String instruments_5_description "Measures atmospheric carbon dioxide (CO2) concentration.";
    String instruments_5_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/382/";
    String instruments_5_instrument_name "CO2 Analyzer";
    String instruments_5_instrument_nid "491476";
    String instruments_5_supplied_name "Qubit S151 infrared CO2 analyzer";
    String instruments_6_acronym "Aquarium chiller";
    String instruments_6_dataset_instrument_nid "755847";
    String instruments_6_description "Immersible or in-line liquid cooling device, usually with temperature control.";
    String instruments_6_instrument_name "Aquarium chiller";
    String instruments_6_instrument_nid "522982";
    String instruments_6_supplied_name "Coralife 1/4HP";
    String instruments_7_dataset_instrument_description "To measure temperature in the tanks";
    String instruments_7_dataset_instrument_nid "755747";
    String instruments_7_instrument_name "Thermometer";
    String instruments_7_instrument_nid "725867";
    String instruments_7_supplied_name "NIST traceable red spirit glass thermometer";
    String keywords "amount, amount_mg_consumed_cm2_day_T10, amount_mg_consumed_cm2_day_T15, amount_mg_consumed_cm2_day_T20, amount_mg_consumed_cm2_day_T5, amount_mg_consumed_day_T10, amount_mg_consumed_day_T15, amount_mg_consumed_day_T20, amount_mg_consumed_day_T5, amount_mg_consumed_T10, amount_mg_consumed_T15, amount_mg_consumed_T20, amount_mg_consumed_T5, area, ave, ave_correction_factor_T10, ave_correction_factor_T15, ave_correction_factor_T20, ave_correction_factor_T5, bco, bco-dmo, biological, carbon, carbon dioxide, cca, cca_surface_area_cm2, chemical, cm2, co2, consumed, corrected, corrected_initial_mass_grams_T10, corrected_initial_mass_grams_T15, corrected_initial_mass_grams_T20, corrected_initial_mass_grams_T5, correction, correction_factor_T10, correction_factor_T15, correction_factor_T20, correction_factor_T5, data, dataset, date, date_10, date_T15, date_T20, date_T5, day, days, diameter, dioxide, dmo, duration, duration_days_10, duration_days_T15, duration_days_T20, duration_days_T5, erddap, factor, grams, grazing, initial, management, mass, oceanography, office, preliminary, replicate, sample, sample_mass_grams_T0, sample_mass_grams_T10, sample_mass_grams_T15, sample_mass_grams_T20, sample_mass_grams_T5, sampling, sampling_time_10, sampling_time_T0, sampling_time_T15, sampling_time_T20, sampling_time_T5, standard, standard_ave_grams_T0, standard_ave_grams_T10, standard_ave_grams_T15, standard_ave_grams_T20, standard_ave_grams_T5, surface, t10, t15, t20, tank, tank_pCO2_ave, tank_temp_ave, temperature, time, treatment, treatment_grazing, treatment_pCO2, treatment_temp, urchin, urchin_diameter_mm";
    String license "https://www.bco-dmo.org/dataset/755735/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/755735";
    String param_mapping "{'755735': {'date_T0': 'flag - time'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/755735/parameters";
    String people_0_affiliation "University of Maine";
    String people_0_affiliation_acronym "U Maine DMC";
    String people_0_person_name "Robert  S. Steneck";
    String people_0_person_nid "526659";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "University of California-Santa Cruz";
    String people_1_affiliation_acronym "UC Santa Cruz";
    String people_1_person_name "James Estes";
    String people_1_person_nid "51389";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Bigelow Laboratory for Ocean Sciences";
    String people_2_person_name "Douglas B. Rasher";
    String people_2_person_nid "480721";
    String people_2_role "Co-Principal Investigator";
    String people_2_role_type "originator";
    String people_3_affiliation "Woods Hole Oceanographic Institution";
    String people_3_affiliation_acronym "WHOI BCO-DMO";
    String people_3_person_name "Nancy Copley";
    String people_3_person_nid "50396";
    String people_3_role "BCO-DMO Data Manager";
    String people_3_role_type "related";
    String project "OA Kelp Forest Function";
    String projects_0_acronym "OA Kelp Forest Function";
    String projects_0_description 
"Extracted from the NSF award abstract:
Marine calcifying organisms are most at risk to rapid ocean acidification (OA) in cold-water ecosystems. The investigators propose to determine if a globally unique and widespread calcareous alga in Alaska's Aleutian archipelago, Clathromorphum nereostratum, is threatened with extinction due to the combined effects of OA and food web alterations. C. nereostratum is a slow growing coralline alga that can live to at least 2000 years. It accretes massive 'bioherms' that dominate the regions' rocky substrate both under kelp forests and deforested sea urchin barrens. It develops growth bands (similar to tree rings) in its calcareous skeleton, which effectively record its annual calcification rate over centuries. Pilot data suggest the skeletal density of C. nereostratum began to decline precipitously in the 1990's in some parts of the Aleutian archipelago. The investigators now propose to use high-resolution microscopy and microCT imaging to examine how the growth and skeletal density of C. nereostratum has changed in the past 300 years (i.e., since the industrial revolution) across the western Aleutians. They will compare their records of algal skeletal densities and their variation through time with reconstructions of past climate to infer causes of change. In addition, the investigators will examine whether the alga's defense against grazing by sea urchins is compromised by ongoing ocean acidification. The investigators will survey the extent of C. nereostratum bioerosion occurring at 10 sites spanning the western Aleutians, both inside and outside of kelp forests. At each site they will compare these patterns to observed and monitored ecosystem trophic structure and recent C. nereostratum calcification rates. Field observations will be combined with laboratory experiments to determine if it is a decline in the alga's skeletal density (due to recent OA and warming), an increase in grazing intensity (due to recent trophic-level dysfunction), or their interactive effects that are likely responsible for bioerosion patterns inside vs. outside of forests. By sampling C. nereostratum inside and outside of forests, they will determine if kelp forests locally increase pH via photosynthesis, and thus buffer the effects of OA on coralline calcification. The combination of field observations with laboratory controlled experiments, manipulating CO2 and temperature, will help elucidate drivers of calcification and project how these species interactions will likely change in the near future. The project will provide the first in situ example of how ongoing ocean acidification is affecting the physiology of long-lived, carbonate producing organisms in the subarctic North Pacific. It will also be one of the first studies to document whether OA, ocean warming, and food web changes to ecological processes are interacting in complex ways to reshape the outcome of species interactions in nature.";
    String projects_0_end_date "2016-08";
    String projects_0_name "Ocean Acidification:  Century Scale Impacts to Ecosystem Structure and Function of Aleutian Kelp Forests";
    String projects_0_project_nid "526660";
    String projects_0_start_date "2013-09";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "Estimates of per capita sea urchin (Strongylocentrotus polyacanthus) grazing rates on the alga Clathromorphum nereostratum, evaluated as a function of seawater temperature and pCO2 concentration that each were simultaneously cultured in for three months. Incubations and assays were performed in a controlled mesocosm setting.";
    String time_coverage_end "2016-01-15";
    String time_coverage_start "2016-01-14";
    String title "[Lab urchin grazing assay fx temp and pCO2] - Experimental study to estimate per capita sea urchin (Strongylocentrotus polyacanthus) grazing rates on the alga Clathromorphum nereostratum as a function of seawater temperature and pCO2 concentration (Ocean Acidification:  Century Scale Impacts to Ecosystem Structure and Function of Aleutian Kelp Forests)";
    String version "1";
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact