BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Dataset Title: | [Foraminifera counts] - Absolute abundance of Foraminifera in Pacific Panama, 2019 (Collaborative Research: Climate Change, Mesoscale Oceanography, and the Dynamics of Eastern Pacific Coral Reefs) |
Institution: | BCO-DMO (Dataset ID: bcodmo_dataset_776411) |
Information: | Summary | License | ISO 19115 | Metadata | Background | Subset | Files | Make a graph |
Attributes { s { Gulf { String bcodmo_name "region"; String description "location of the study"; String long_name "Gulf"; String units "unitless"; } Location { String bcodmo_name "site"; String description "experimental site"; String long_name "Location"; String units "unitless"; } Site { String bcodmo_name "sample"; String description "coded identifier for sampling location"; String long_name "Site"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/ACYC/"; String units "unitless"; } Year { Int16 _FillValue 32767; Int16 actual_range 2019, 2019; String bcodmo_name "year"; String description "time when sample was collected"; String long_name "Year"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/YEARXXXX/"; String units "unitless"; } Weight_of_Sediment { Float32 _FillValue NaN; Float32 actual_range 1.3522, 6.7434; String bcodmo_name "weight"; String description "sediment weight containing the foraminiferas"; String long_name "Weight Of Sediment"; String units "grams (g)"; } Quinqueloculina { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 19, 110; String bcodmo_name "relative_abund"; String description "the relative abundance of Quinqueloculina in the sediment"; String long_name "Quinqueloculina"; String units "unitless"; } Spiroloculina { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 6; String bcodmo_name "relative_abund"; String description "the relative abundance of Spiroloculina in the sediment"; String long_name "Spiroloculina"; String units "unitless"; } RosaDiscorbis { Int16 _FillValue 32767; Int16 actual_range 70, 197; String bcodmo_name "relative_abund"; String description "the relative abundance of RosaDiscorbis in the sediment"; String long_name "Rosa Discorbis"; String units "unitless"; } Peneroplis { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 48; String bcodmo_name "relative_abund"; String description "the relative abundance of Peneroplis in the sediment"; String long_name "Peneroplis"; String units "unitless"; } Neoconorbina { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 7; String bcodmo_name "relative_abund"; String description "the relative abundance of Neoconorbina in the sediment"; String long_name "Neoconorbina"; String units "unitless"; } Sorites { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 43; String bcodmo_name "relative_abund"; String description "the relative abundance of Sorites in the sediment"; String long_name "Sorites"; String units "unitless"; } Uvigerina { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 12; String bcodmo_name "relative_abund"; String description "the relative abundance of Uvigerina in the sediment"; String long_name "Uvigerina"; String units "unitless"; } Bolivina { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 27; String bcodmo_name "relative_abund"; String description "the relative abundance of Bolivina in the sediment"; String long_name "Bolivina"; String units "unitless"; } Elphidium { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 9; String bcodmo_name "relative_abund"; String description "the relative abundance of Elphidium in the sediment"; String long_name "Elphidium"; String units "unitless"; } Cymbaloporetta { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 17; String bcodmo_name "relative_abund"; String description "the relative abundance of Cymbaloporetta in the sediment"; String long_name "Cymbaloporetta"; String units "unitless"; } Nonioinella { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 12; String bcodmo_name "relative_abund"; String description "the relative abundance of Nonioinella in the sediment"; String long_name "Nonioinella"; String units "unitless"; } Hayesina { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 34; String bcodmo_name "relative_abund"; String description "the relative abundance of Hayesina in the sediment"; String long_name "Hayesina"; String units "unitless"; } Borelis { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 3; String bcodmo_name "relative_abund"; String description "the relative abundance of Borelis in the sediment"; String long_name "Borelis"; String units "unitless"; } Pseudohauerina { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 14; String bcodmo_name "relative_abund"; String description "the relative abundance of Pseudohauerina in the sediment"; String long_name "Pseudohauerina"; String units "unitless"; } Amphistegina { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 20; String bcodmo_name "relative_abund"; String description "the relative abundance of Amphistegina in the sediment"; String long_name "Amphistegina"; String units "unitless"; } Marginopora { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 3; String bcodmo_name "relative_abund"; String description "the relative abundance of Marginopora in the sediment"; String long_name "Marginopora"; String units "unitless"; } Triloculina { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 13; String bcodmo_name "relative_abund"; String description "the relative abundance of Triloculina in the sediment"; String long_name "Triloculina"; String units "unitless"; } Reusella { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 4; String bcodmo_name "relative_abund"; String description "the relative abundance of Reusella in the sediment"; String long_name "Reusella"; String units "unitless"; } Articulina { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 2; String bcodmo_name "relative_abund"; String description "the relative abundance of Articulina in the sediment"; String long_name "Articulina"; String units "unitless"; } Planorbulina { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 35; String bcodmo_name "relative_abund"; String description "the relative abundance of Planorbulina in the sediment"; String long_name "Planorbulina"; String units "unitless"; } Miliolinella { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 9; String bcodmo_name "relative_abund"; String description "the relative abundance of Miliolinella in the sediment"; String long_name "Miliolinella"; String units "unitless"; } Textularia { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 0, 3; String bcodmo_name "relative_abund"; String description "the relative abundance of Textularia in the sediment"; String long_name "Textularia"; String units "unitless"; } Total { Int16 _FillValue 32767; Int16 actual_range 244, 320; String bcodmo_name "count"; String description "the total abundance of foraminifera in the sediment"; String long_name "Total"; String units "unitless"; } } NC_GLOBAL { String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv"; String acquisition_description "In March 2019, samples were collected at 3 sites in the Gulf of Chiriqui and 3 sites in the Gulf of Panama. Five, 10-20 cm3 samples of sand from each location were collected with a spoon and placed in a plastic bag for a total of 30 samples. They were taken back to the lab where foraminifera abundances and identification to the genus level were collected using a stereomicroscope."; String awards_0_award_nid "655898"; String awards_0_award_number "OCE-1535007"; String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1535007"; String awards_0_funder_name "NSF Division of Ocean Sciences"; String awards_0_funding_acronym "NSF OCE"; String awards_0_funding_source_nid "355"; String awards_0_program_manager "Michael E. Sieracki"; String awards_0_program_manager_nid "50446"; String cdm_data_type "Other"; String comment "Foraminifera counts Absolute abundance of Foraminifera in Pacific Panama, 2019 PI: Aronson, R.B. (FIT), L. Toth (USGS) Version: 2019-09-09"; String Conventions "COARDS, CF-1.6, ACDD-1.3"; String creator_email "info@bco-dmo.org"; String creator_name "BCO-DMO"; String creator_type "institution"; String creator_url "https://www.bco-dmo.org/"; String data_source "extract_data_as_tsv version 2.3 19 Dec 2019"; String date_created "2019-09-11T14:18:11Z"; String date_modified "2019-09-12T13:23:02Z"; String defaultDataQuery "&time<now"; String doi "10.1575/1912/bco-dmo.776411.1"; String history "2024-09-18T18:20:36Z (local files) 2024-09-18T18:20:36Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_776411.html"; String infoUrl "https://www.bco-dmo.org/dataset/776411"; String institution "BCO-DMO"; String instruments_0_dataset_instrument_description "Used to count and identify foraminifera."; String instruments_0_dataset_instrument_nid "776418"; String instruments_0_description "Instruments that generate enlarged images of samples using the phenomena of reflection and absorption of visible light. Includes conventional and inverted instruments. Also called a \"light microscope\"."; String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB05/"; String instruments_0_instrument_name "Microscope-Optical"; String instruments_0_instrument_nid "708"; String instruments_0_supplied_name "stereo microscope"; String keywords "amphistegina, articulina, bco, bco-dmo, biological, bolivina, borelis, chemical, cymbaloporetta, data, dataset, discorbis, dmo, elphidium, erddap, gulf, hayesina, Location, management, marginopora, miliolinella, neoconorbina, nonioinella, oceanography, office, peneroplis, planorbulina, preliminary, pseudohauerina, quinqueloculina, reusella, rosa, RosaDiscorbis, sediment, site, sorites, spiroloculina, textularia, total, triloculina, uvigerina, weight, Weight_of_Sediment, year"; String license "https://www.bco-dmo.org/dataset/776411/license"; String metadata_source "https://www.bco-dmo.org/api/dataset/776411"; String param_mapping "{'776411': {}}"; String parameter_source "https://www.bco-dmo.org/mapserver/dataset/776411/parameters"; String people_0_affiliation "Florida Institute of Technology"; String people_0_affiliation_acronym "FIT"; String people_0_person_name "Dr Richard B. Aronson"; String people_0_person_nid "655902"; String people_0_role "Principal Investigator"; String people_0_role_type "originator"; String people_1_affiliation "United States Geological Survey"; String people_1_affiliation_acronym "USGS"; String people_1_person_name "Dr Lauren T. Toth"; String people_1_person_nid "655904"; String people_1_role "Co-Principal Investigator"; String people_1_role_type "originator"; String people_2_affiliation "Woods Hole Oceanographic Institution"; String people_2_affiliation_acronym "WHOI BCO-DMO"; String people_2_person_name "Nancy Copley"; String people_2_person_nid "50396"; String people_2_role "BCO-DMO Data Manager"; String people_2_role_type "related"; String project "Coral Climate ETP"; String projects_0_acronym "Coral Climate ETP"; String projects_0_description "Coral reefs are under threat around the world, and climate change is the main reason they are declining. Knowing how local conditions on a reef exaggerate or mask the impacts of climate change make it possible to predict which reefs are most likely to survive longer and, therefore, which reefs deserve the greatest effort and funding for conservation. Reefs off the Pacific coast of Panama are vulnerable to the impacts of global climate change but are also strongly influenced by small-scale currents and other local conditions. The goal of this study is to see how those local differences affect coral growth and the ability of the corals to build reefs. Climate change appears poised to shut down reef growth off Pacific Panama within the next century. Considering that sea-level rise is accelerating at the same time, if coral reefs shut down they will not be able to protect populated shorelines from storm damage and erosion. In addition to its scientific insights, this project will provide undergraduate and graduate training, provide research training for underrepresented groups, advance women in scientific careers, and contribute important information for management and policy. The results will be incorporated into innovative curricular materials for K through 12 classes in Title-I schools in Florida aligned with Next Generation (Common Core) standards, and standards for Climate and Ocean Literacy. An annual film festival will be organized for K through 12 students to explore themes in marine science through videography. Global climate change is now the leading cause of coral-reef degradation, but the extent to which mesoscale oceanography overprints climatic forcing is poorly understood. Previous studies in Pacific Panama showed that reef ecosystems collapsed from 4100 to 1600 years ago. The 2500-yr hiatus in reef-building occurred at locations throughout the Pacific, and the primary cause was increased variability of the El Nino-Southern Oscillation. This study will determine the influence of contemporary variability in mesoscale oceanography in the eastern tropical Pacific (ETP) on variability in the condition of local coral populations. Insights from the living populations will be combined with paleoecological and geochemical studies of reef frameworks to infer past conditions that were inimical or beneficial to coral growth and reef accretion. Three primary hypotheses will be tested in Pacific Panama: H1. Mesoscale oceanography is manifested in gradients of reef condition, coral growth, and coral physiological condition. Physiographic protection from upwelling currents and thermocline shoaling confers positive effects on coral growth rate and physiology. H2. The impacts of mesoscale oceanographic regimes on the growth and condition of reef-corals were felt at least as far back as the mid- to late Holocene. H3. Physiographic protection from upwelling currents and thermocline shoaling conferred positive effects on vertical reef accretion in the past and shortened the late-Holocene hiatus. Specific research approaches to test these hypotheses will include collecting high-resolution, oceanographic time series to characterize contemporary environments along gradients of physical conditions; collecting ecological and geochemical data on the condition of living coral populations; and extracting cores from the reef frameworks and analyzing the coral assemblages taxonomically, taphonomically, and geochemically to assess patterns of biotic and paleoenvironmental variability. Strong spatial and temporal variability in the physical drivers of reef development make the ETP an excellent model system in which to examine the response of coral reefs to climate change over a range of physical regimes. This research will provide a unique opportunity to tease apart the controls on reef development across multiple spatial and temporal scales. The climatology underlying the late-Holocene hiatus was similar to probable scenarios for the next century, implying that climate change could be driving reef ecosystems of the ETP (and elsewhere) toward another collapse. Understanding how the hiatus unfolded along oceanographic gradients will increase our power to predict the future responses of reefs to a rapidly changing climate."; String projects_0_end_date "2019-03"; String projects_0_geolocation "Pacific Panamá"; String projects_0_name "Collaborative Research: Climate Change, Mesoscale Oceanography, and the Dynamics of Eastern Pacific Coral Reefs"; String projects_0_project_nid "655899"; String projects_0_project_website "http://www.fit.edu/research/portal/project/420/climate-change-mesoscale-oceanography-and-the-dynamics-of-eastern-pacific-coral-reefs"; String projects_0_start_date "2015-09"; String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)"; String publisher_type "institution"; String sourceUrl "(local files)"; String standard_name_vocabulary "CF Standard Name Table v55"; String subsetVariables "Year"; String summary "Absolute abundance of Foraminifera in Pacific Panama, 2019."; String title "[Foraminifera counts] - Absolute abundance of Foraminifera in Pacific Panama, 2019 (Collaborative Research: Climate Change, Mesoscale Oceanography, and the Dynamics of Eastern Pacific Coral Reefs)"; String version "1"; String xml_source "osprey2erddap.update_xml() v1.3"; } }
The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.
Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names,
followed by a collection of
constraints (e.g., variable<value),
each preceded by '&' (which is interpreted as "AND").
For details, see the tabledap Documentation.