BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Video Plankton Recorder environmental sensor data from the first cruise of
SPIROPA project aboard the R/V Neil Armstrong on April 26, 2018
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_805392)
Range: longitude = -70.82971 to -70.75453°E, latitude = 39.7112 to 40.25375°N, depth = -0.094 to 100.843m, time = 2018-04-26T19:10:00Z to 2018-04-26T23:50:42Z
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Subset | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
Time range:                    
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.5247698e+9, 1.524786642e+9;
    String axis "T";
    String bcodmo_name "ISO_DateTime_UTC";
    String description "Date and time in UTC following ISO 8601 format";
    String ioos_category "Time";
    String long_name "ISO Date Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String source_name "ISO_DateTime_UTC";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01T00:00:00Z";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -70.82971, -70.75453;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "longitude with negative values indicating West";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 39.7112, 40.25375;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "latitude with positive values indicating North";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range -0.094, 100.843;
    String axis "Z";
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "depth";
    String ioos_category "Location";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  vprtimestep {
    Int32 _FillValue 2147483647;
    Int32 actual_range 68987061, 85828626;
    String bcodmo_name "unknown";
    String description "video plankton recorder time step";
    String long_name "Vprtimestep";
    String units "unitless";
  }
  gmt {
    Float32 _FillValue NaN;
    Float32 actual_range 191000.0, 235042.0;
    String bcodmo_name "time";
    String description "UTC time in the format hhmmss";
    String long_name "GMT";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  date {
    Int32 _FillValue 2147483647;
    Int32 actual_range 260418, 260418;
    String bcodmo_name "date";
    String description "serial date number in the format DDMMYY";
    String long_name "Date";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String units "unitless";
  }
  latitude_ {
    Float64 _FillValue NaN;
    Float64 actual_range 3942.672019, 4015.224865;
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "latitude ddmm.mmmm degrees N";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees decimal minutes";
  }
  longitude_ {
    Float64 _FillValue NaN;
    Float64 actual_range -7049.782629, -7045.27154;
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "longitude ddmm.mmmm degrees W";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees decimal minutes";
  }
  maxdepth {
    Byte _FillValue 127;
    Byte actual_range -1, -1;
    String bcodmo_name "depth_max";
    String description "maximal deptgh";
    String long_name "Maxdepth";
    String units "meters (m)";
  }
  alt {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 0.0;
    String bcodmo_name "altitude";
    String description "altitude";
    String long_name "Alt";
    String units "meters (m)";
  }
  roll {
    Float32 _FillValue NaN;
    Float32 actual_range -25.575, 12.091;
    String bcodmo_name "roll";
    String description "roll";
    String long_name "Roll";
    String units "degrees";
  }
  pitch {
    Float32 _FillValue NaN;
    Float32 actual_range -33.429, 62.333;
    String bcodmo_name "pitch";
    String description "pitch";
    String long_name "Pitch";
    String units "degrees";
  }
  fluor {
    Float32 _FillValue NaN;
    Float32 actual_range 72.12, 826.0;
    String bcodmo_name "fluorescence";
    String description "flourescence";
    String long_name "Fluor";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CPHLPM01/";
    String units "volts (V)";
  }
  turb {
    Float32 _FillValue NaN;
    Float32 actual_range 86.0, 10023.0;
    String bcodmo_name "turbidity";
    String description "turbidity";
    String long_name "Turb";
    String units "micrograms per liter (ug/L)";
  }
  par {
    Float64 _FillValue NaN;
    Float64 actual_range 9161.171, 2.1293996696233537e+51;
    String bcodmo_name "PAR";
    Float64 colorBarMaximum 70.0;
    Float64 colorBarMinimum 0.0;
    String description "PAR/irradiance";
    String long_name "Downwelling Photosynthetic Photon Radiance In Sea Water";
    String units "microEinsteins/m^2/second (uE/m2/s)";
  }
  oxy {
    Float32 _FillValue NaN;
    Float32 actual_range 1500.765, 2975.48;
    String bcodmo_name "dissolved Oxygen";
    String description "oxygen";
    String long_name "Oxy";
    String units "volts (V)";
  }
  sal {
    Float32 _FillValue NaN;
    Float32 actual_range 12.683, 36.197;
    String bcodmo_name "sal";
    String description "salinity";
    String long_name "Sal";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PSALST01/";
    String units "unitless";
  }
  temp {
    Float32 _FillValue NaN;
    Float32 actual_range 6.851, 17.989;
    String bcodmo_name "temperature";
    String description "temperature";
    String long_name "Temperature";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/";
    String units "degrees Celsius (C)";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"The instrument was towed behind a ship and undulated within the depth range of
5-100 m below surface.";
    String awards_0_award_nid "748850";
    String awards_0_award_number "OCE-1657803";
    String awards_0_data_url "https://www.nsf.gov/awardsearch/showAward?AWD_ID=1657803";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "David L. Garrison";
    String awards_0_program_manager_nid "50534";
    String cdm_data_type "Other";
    String comment 
"Video Plankton Recorder environmental sensor data from the first cruise of SPIROPA project in April 2018 
  PI: Dennis McGillicuddy 
  Version: 2020-03-20";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2020-03-06T14:33:27Z";
    String date_modified "2020-04-08T15:03:40Z";
    String defaultDataQuery "&time<now";
    String doi "10.26008/1912/bco-dmo.805392.1";
    Float64 Easternmost_Easting -70.75453;
    Float64 geospatial_lat_max 40.25375;
    Float64 geospatial_lat_min 39.7112;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -70.75453;
    Float64 geospatial_lon_min -70.82971;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 100.843;
    Float64 geospatial_vertical_min -0.094;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2020-08-11T00:17:05Z (local files)
2020-08-11T00:17:05Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_805392.das";
    String infoUrl "https://www.bco-dmo.org/dataset/805392";
    String institution "BCO-DMO";
    String instruments_0_acronym "VPR";
    String instruments_0_dataset_instrument_description "Environmental data (temperature, salinity, turbidity, fluorescence, irradiance, dissolved oxygen) collected by sensors mounted on the Video Plankton Recorder (VPR)";
    String instruments_0_dataset_instrument_nid "806756";
    String instruments_0_description 
"The Video Plankton Recorder (VPR) is a video-microscope system used for imaging plankton and other particulate matter in the size range from a few micrometers to several centimeters. The VPR is essentially an underwater microscope. It consists of four video cameras (with magnifying optics) synchronized at 60 fields per second (fps) to a red-filtered 80 W xenon strobe (pulse duration = 1 microsecond). The current lens on each camera can be adjusted to provide a field of view between 5 mm and 10 cm. Use of higher magnification lenses is currently being explored for viewing protozoans (less than 1 micrometer resolution). The four cameras are set for concentric viewing fields so that a range of up to four magnifications can be viewed simultaneously, allowing a wide size range of plankton to be sampled. Depth of field is adjusted by the lens aperture setting, and the volume sampled in each video field ranges from about 1 ml to 1 liter, depending on lens settings. The cameras have been configured for stereoscopic viewing as well.A strobe on the other arm illuminates the imaged volume and flashes 60 times per second, producing 60 images per second of the particles and plankton in the water. The images are then saved internally on a computer hard disk and later plotted.

Deployment: Most commonly, the VPR is mounted in a frame and lowered into the water from the stern of the ship. Sometimes, a CTD also is mounted next to the VPR to collect depth, temperature, and salinity information at the same time as each video image. The instrument is lowered down through the water to a maximum depth of 350 meters to generate a profile of plankton/particle abundance and taxon group along with temperature and salinity. In addition to the towed configuration for mapping plankton distributions, it is possible to deploy the VPR in a fixed position (on a mooring) for viewing plankton swimming behaviors in two or three dimensions. The VPR instrument system has been used in both configurations, and deployment on ROVs has been proposed.

This definition was taken from the WHOI Ocean Instruments Web site  and from a US GLOBEC Newsletter.";
    String instruments_0_instrument_name "Video Plankton Recorder";
    String instruments_0_instrument_nid "451";
    String instruments_0_supplied_name "Video Plankton Recorder environmental sensors";
    String keywords "active, altimetry, available, bco, bco-dmo, biological, chemical, data, dataset, date, depth, dmo, downwelling, downwelling_photosynthetic_photon_radiance_in_sea_water, earth, Earth Science > Oceans > Ocean Optics > Photosynthetically Active Radiation, Earth Science > Oceans > Ocean Optics > Radiance, erddap, fluor, iso, laboratory, latitude, longitude, management, maxdepth, ocean, oceanography, oceans, office, optics, oxy, par, photon, photosynthetic, photosynthetically, pitch, preliminary, radiance, radiation, roll, sal, satellite, science, sea, seawater, temperature, time, turb, vprtimestep, water";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "https://www.bco-dmo.org/dataset/805392/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/805392";
    Float64 Northernmost_Northing 40.25375;
    String param_mapping "{'805392': {'lat': 'flag - latitude', 'depth': 'flag - depth', 'lon': 'flag - longitude', 'ISO_DateTime_UTC': 'flag - time'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/805392/parameters";
    String people_0_affiliation "Woods Hole Oceanographic Institution";
    String people_0_affiliation_acronym "WHOI";
    String people_0_person_name "Dennis J. McGillicuddy";
    String people_0_person_nid "50429";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Woods Hole Oceanographic Institution";
    String people_1_affiliation_acronym "WHOI";
    String people_1_person_name "Weifeng Gordon Zhang";
    String people_1_person_nid "748839";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Woods Hole Oceanographic Institution";
    String people_2_affiliation_acronym "WHOI BCO-DMO";
    String people_2_person_name "Mathew Biddle";
    String people_2_person_nid "708682";
    String people_2_role "BCO-DMO Data Manager";
    String people_2_role_type "related";
    String project "SPIROPA";
    String projects_0_acronym "SPIROPA";
    String projects_0_description 
"NSF award abstract:
The continental shelf break of the Middle Atlantic Bight supports a productive and diverse ecosystem. Current paradigms suggest that this productivity is driven by several upwelling mechanisms at the shelf break front. This upwelling supplies nutrients that stimulate primary production by phytoplankton, which in turn leads to enhanced production at higher trophic levels. Although local enhancement of phytoplankton biomass has been observed in some circumstances, such a feature is curiously absent from time-averaged measurements, both from satellites and shipboard sampling. Why would there not be a mean enhancement in phytoplankton biomass as a result of the upwelling? One hypothesis is that grazing by zooplankton prevents accumulation of biomass on seasonal and longer time scales, transferring the excess production to higher trophic levels and thereby contributing to the overall productivity of the ecosystem. However, another possibility is that the net impact of these highly intermittent processes is not adequately represented in long-term means of the observations, because of the relatively low resolution of the in-water measurements and the fact that the frontal enhancement can take place below the depth observable by satellite. The deployment of the Ocean Observatories Initiative (OOI) Pioneer Array south of New England has provided a unique opportunity to test these hypotheses. The combination of moored instrumentation and autonomous underwater vehicles will facilitate observations of the frontal system with unprecedented spatial and temporal resolution. This will provide an ideal four-dimensional (space-time) context in which to conduct a detailed study of frontal dynamics and plankton communities needed to examine mechanisms controlling phytoplankton populations in this frontal system. This project will also: (1) promote teaching, training and learning via participation of graduate and undergraduate students in the research , (2) provide a broad dissemination of information by means of outreach in public forums, printed media, and a video documentary of the field work, and (3) contribute to improving societal well-being and increased economic competitiveness by providing the knowledge needed for science-based stewardship of coastal ecosystems, with particular emphasis on connecting with the fishing industry through the Commercial Fisheries Research Foundation.
The investigators will conduct a set of three cruises to obtain cross-shelf sections of physical, chemical, and biological properties within the Pioneer Array. Nutrient distributions will be assayed together with hydrography to detect the signature of frontal upwelling and associated nutrient supply. The investigators expect that enhanced nutrient supply will lead to changes in the phytoplankton assemblage, which will be quantified with conventional flow cytometry, imaging flow cytometry (Imaging FlowCytobot, IFCB), optical imaging (Video Plankton Recorder, VPR), traditional microscopic methods, and pigment analysis. Zooplankton will be measured in size classes ranging from micro- to mesozooplankton with the IFCB and VPR, respectively, and also with microscopic analysis. Biological responses to upwelling will be assessed by measuring rates of primary productivity, zooplankton grazing, and net community production. These observations will be synthesized in the context of a coupled physical-biological model to test the two hypotheses that can potentially explain prior observations: (1) grazer-mediated control and (2) undersampling. Hindcast simulations will also be used to diagnose the relative importance of the various mechanisms of upwelling. The intellectual merit of this effort stems from our interdisciplinary approach, advanced observational techniques, and integrated analysis in the context of a state-of-the-art coupled model. The project will address longstanding questions regarding hydrodynamics and productivity of an important ecosystem, leading to improved understanding of physical-biological interactions in a complex continental shelf regime. Given the importance of frontal systems in the global coastal ocean, it is expected that knowledge gained will have broad applicability beyond the specific region being studied.";
    String projects_0_end_date "2020-09";
    String projects_0_geolocation "Shelf break south of New England, OOI Pioneer Array";
    String projects_0_name "Collaborative Research:  Shelfbreak Frontal Dynamics: Mechanisms of Upwelling, Net Community Production, and Ecological Implications";
    String projects_0_project_nid "748894";
    String projects_0_project_website "http://science.whoi.edu/users/olga/SPIROPA/SPIROPA.html";
    String projects_0_start_date "2017-10";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 39.7112;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "date,maxdepth,alt";
    String summary "Video Plankton Recorder environmental sensor data from the first cruise of SPIROPA project in April 2018.";
    String time_coverage_end "2018-04-26T23:50:42Z";
    String time_coverage_start "2018-04-26T19:10:00Z";
    String title "Video Plankton Recorder environmental sensor data from the first cruise of SPIROPA project aboard the R/V Neil Armstrong on April 26, 2018";
    String version "1";
    Float64 Westernmost_Easting -70.82971;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact