BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  [Autotrophy, heterotrophy, and niche partitioning in Caribbean sponges] -
Autotrophy, heterotrophy and niche partitioning in Caribbean sponges sampled
June 9, 2019 on reef sites around Bocas del Toro Panama. (Collaborative
Research: Investigations into microbially mediated ecological diversification
in sponges)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_954735_v1)
Range: longitude = -82.26245 to -82.26245°E, latitude = 9.349457 to 9.349457°N
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Species {
    String long_name "Species";
    String units "unitless";
  }
  Full_scientific_name {
    String long_name "Full_scientific_name";
    String units "unitless";
  }
  Date {
    String long_name "Date";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float32 actual_range 9.349457, 9.349457;
    String axis "Y";
    String ioos_category "Location";
    String long_name "Latitude";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float32 actual_range -82.26245, -82.26245;
    String axis "X";
    String ioos_category "Location";
    String long_name "Longitude";
    String standard_name "longitude";
    String units "degrees_east";
  }
  Replicate {
    Int32 actual_range 1, 10;
    String long_name "Replicate";
    String units "unitless";
  }
  Fraction {
    String long_name "Fraction";
    String units "unitless";
  }
  Initial_d15N {
    Float32 actual_range -1.4, 8.1;
    String long_name "Initial_d15n";
    String units "permille ( ‰)";
  }
  Initial_wt_percN {
    Float32 actual_range 1.1, 9.1;
    String long_name "Initial_wt_percn";
    String units "percentage (%)";
  }
  Initial_Atm_perc15N {
    Float32 actual_range 0.365777, 0.369259;
    String long_name "Initial_atm_perc15n";
    String units "percentage (%)";
  }
  Initial_d13C {
    Float32 actual_range -22.2, -16.3;
    String long_name "Initial_d13c";
    String units "permille ( ‰)";
  }
  Initial_wt_percC {
    Float32 actual_range 9.0, 44.5;
    String long_name "Initial_wt_percc";
    String units "percentage (%)";
  }
  Atm_perc13C {
    Float32 actual_range 1.081319, 1.087809;
    String long_name "Atm_perc13c";
    String units "percentage (%)";
  }
  Dark_d15N {
    Float32 actual_range 10.38479, 400.8871;
    String long_name "Dark_d15n";
    String units "permille ( ‰)";
  }
  Dark_wt_percN {
    Float32 actual_range 1.055543, 11.52683;
    String long_name "Dark_wt_percn";
    String units "percentage (%)";
  }
  Dark_Atm_perc15N {
    Float32 actual_range 0.3700832, 0.5123833;
    String long_name "Dark_atm_perc15n";
    String units "percentage (%)";
  }
  Dark_d13C {
    Float32 actual_range -20.68738, -9.52869;
    String long_name "Dark_d13c";
    String units "permille ( ‰)";
  }
  Dark_wt_percC {
    Float32 actual_range 5.281312, 49.54512;
    String long_name "Dark_wt_percc";
    String units "percentage (%)";
  }
  Dark_Atm_perc13C {
    Float32 actual_range 1.082976, 1.09518;
    String long_name "Dark_atm_perc13c";
    String units "percentage (%)";
  }
  Dark_Change_in_d15N {
    Float32 actual_range 5.233793, 396.694;
    String long_name "Dark_change_in_d15n";
    String units "permille ( ‰)";
  }
  Dark_Change_in_d13C {
    Float32 actual_range -0.8315192, 10.26896;
    String long_name "Dark_change_in_d13c";
    String units "permille ( ‰)";
  }
  Light_d15N {
    Float32 actual_range 7.405375, 1464.092;
    String long_name "Light_d15n";
    String units "permille ( ‰)";
  }
  Light_wt_percN {
    Float32 actual_range 0.3523712, 9.916605;
    String long_name "Light_wt_percn";
    String units "percentage (%)";
  }
  Light_Atm_perc15N {
    Float32 actual_range 0.3689959, 0.8977658;
    String long_name "Light_atm_perc15n";
    String units "percentage (%)";
  }
  Light_d13C {
    Float32 actual_range -19.2376, 393.2827;
    String long_name "Light_d13c";
    String units "permille ( ‰)";
  }
  Light_wt_percC {
    Float32 actual_range 1.866867, 45.98655;
    String long_name "Light_wt_percc";
    String units "percentage (%)";
  }
  Light_Atm_perc13C {
    Float32 actual_range 1.084561, 1.533744;
    String long_name "Light_atm_perc13c";
    String units "percentage (%)";
  }
  Light_Change_in_d15N {
    Float32 actual_range 2.328924, 1459.898;
    String long_name "Light_change_in_d15n";
    String units "permille ( ‰)";
  }
  Light_Change_in_d13C {
    Float32 actual_range 0.8188998, 414.1417;
    String long_name "Light_change_in_d13c";
    String units "permille ( ‰)";
  }
  Light_photo_d15N {
    Float32 actual_range -23.63561, 839.7053;
    String long_name "Light_photo_d15n";
    String units "permille ( ‰)";
  }
  light_photo_d13C {
    Float32 actual_range -0.1827913, 369.9834;
    String long_name "Light_photo_d13c";
    String units "permille ( ‰)";
  }
  Hetero_d15N {
    Float32 actual_range 5.233793, 396.694;
    String long_name "Hetero_d15n";
    String units "permille ( ‰)";
  }
  hetero_d13C {
    Float32 actual_range -0.8315192, 10.26896;
    String long_name "Hetero_d13c";
    String units "permille ( ‰)";
  }
  POM_heterotrophy_enriched_d13C {
    Float32 actual_range -20.21361, 211.4035;
    String long_name "Pom_heterotrophy_enriched_d13c";
    String units "permille ( ‰)";
  }
  POM_heterotrophy_enriched_d15N {
    Float32 actual_range 11.265, 630.6459;
    String long_name "Pom_heterotrophy_enriched_d15n";
    String units "permille ( ‰)";
  }
  Heterotrophy_POM_change_in_d13c {
    Float32 actual_range -17.21, 232.27;
    String long_name "Heterotrophy_pom_change_in_d13c";
    String units "permille ( ‰)";
  }
  Heterotrophy_POM_change_in_d15N {
    Float32 actual_range 11.23, 626.19;
    String long_name "Heterotrophy_pom_change_in_d15n";
    String units "permille ( ‰)";
  }
  POM_T60_CR {
    Float32 actual_range 7.302432, 701.3691;
    String long_name "Pom_t60_cr";
    String units "mililiters/hour";
  }
  POM_T120_CR {
    Float32 actual_range 6.615214, 515.7516;
    String long_name "Pom_t120_cr";
    String units "mililiters/hour";
  }
 }
  NC_GLOBAL {
    String cdm_data_type "Other";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_url "https://www.bco-dmo.org/";
    String doi "10.26008/1912/bco-dmo.954735.1";
    Float64 Easternmost_Easting -82.26245;
    Float64 geospatial_lat_max 9.349457;
    Float64 geospatial_lat_min 9.349457;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -82.26245;
    Float64 geospatial_lon_min -82.26245;
    String geospatial_lon_units "degrees_east";
    String history 
"2025-05-11T05:34:35Z (local files)
2025-05-11T05:34:35Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_954735_v1.das";
    String infoUrl "https://osprey.bco-dmo.org/dataset/954735";
    String institution "BCO-DMO";
    String license 
"The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.";
    Float64 Northernmost_Northing 9.349457;
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 9.349457;
    String summary "Photosymbionts expand the metabolic capabilities of host sponges, but their potential role in mediating niche partitioning on crowded and oligotrophic coral reefs is unknown. To address this question, we conducted two ex situ isotope tracer experiments with ten of the most ecologically dominant sponge species in the Caribbean. This research was carried out in Bocas del Toro, Panama. To target autotrophic and heterotrophic nutrient acquisition by microbial symbionts, we incubated sponges in seawater laced with the inorganic compounds NaH13CO3 and Na15NO3 under both light and dark conditions. We also measured host sponge heterotrophic feeding rates by incubating the same species with 13C- and 15N-labeled bacterial cells. Sponge cells isolated from sponge species hosting photosymbionts were significantly more enriched in 13C and 15N from inorganic sources, and 72 % of the variation in 13C and 15N enrichment across samples was explained by sponge species identity. Dark enrichment of 13C was minimal, but all species were enriched in 15N in the dark due to heterotrophic microbial nitrogen assimilation. Sponges rapidly consumed bacterial cells, but there was substantial variation in heterotrophic feeding rates among sponge species. When considering all three resource pools (symbiont autotrophy, symbiont heterotrophy, and sponge heterotrophy) and both elements, sponge species identity accounted for over 80 % of variation among specimens; in addition, we observed a clear separation of sponge species along a continuum of heterotrophic feeding on particulate organic matter to autotrophic metabolism via photosymbionts. These data demonstrate that the combined influence of sponge and photosymbiont metabolism enable coexisting sponge species to exploit unique resource pools on Caribbean reefs.";
    String title "[Autotrophy, heterotrophy, and niche partitioning in Caribbean sponges] - Autotrophy, heterotrophy and niche partitioning in Caribbean sponges sampled June 9, 2019 on reef sites around Bocas del Toro Panama. (Collaborative Research: Investigations into microbially mediated ecological diversification in sponges)";
    Float64 Westernmost_Easting -82.26245;
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact